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Abstract. We study some algebraic-geometrical aspects of the peri-
odic 6-particle Kac-van Moerbeke system. This system is known to be
algebraically integrable, having the affine part of a hyperelliptic Jaco-
bian of a genus two curve as the generic fiber of its momentum map.
Particular attention goes to the divisor needed to complete this fiber into
an Abelian variety: it consists of six copies of the curve, intersecting ac-
cording to a pattern which we will determine. We will also compare this
divisor to the divisor which appears in some natural singular compact-
ification of the fiber.
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1. Introduction

The periodic n-particle Kac-van Moerbeke system (KM system) is given
by the following quadratic vector field on Cn:

ẋi = xi(xi−1 − xi+1) , i = 1, . . . , n , (1.1)

where x0 := xn and xn+1 := x1. It is a Hamiltonian system with respect to
the quadratic Poisson structure defined by

{xi, xj} := xixj(δi,j+1 − δi+1,j) , i, j = 1, . . . , n .

Indeed, takingH := x1+x2+· · ·+xn as Hamiltonian, the Hamiltonian vector
field XH := {· ,H} is precisely (1.1). The Poisson structure has rank n − 1
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when n is odd and n− 2 otherwise. The system was introduced by Kac and
van Moerbeke in [6] who constructed this system as a discretization of the
Korteweg-de Vries equation and who also showed its Liouville integrability.
Several first integrals are produced from the Lax operator L(h), which is
obtained from the Lax operator of the classical n-particle Toda lattice by
replacing all diagonal elements by zero; see [5] for a precise account of this
in terms of Poisson geometry. They yield s := [(n+ 3)/2] independent first
integrals, in involution, which is the exact number required to assure the
Liouville integrability of the periodic n-particle KM system.

It was shown in [5] that all periodic KM systems are algebraically inte-
grabile (a.c.i.). It means that for generic c := (c1, . . . , cs) ∈ C

s the fiber
Fc := F−1(c) of the momentum map (the map F : Cn → C

s, defined by
the first integrals) is an affine part1 of an Abelian variety Tc and that the
integrable vector fields are translation invariant (with respect to the group
structure on the Abelian varieties) on these fibers. In the present case of the
periodic n-particle KM system, the Abelian variety Tc has two (equivalent)
descriptions:

• As the Prym variety of the spectral curve |zIdn−Lc(h)| = 0, equipped
with the involution (z, h) 7→ (−z, h); here, Lc(h) denotes the Lax op-
erator L(h), restricted to Fc;

• As hyperelliptic Jacobians, associated to the quotient of the above
spectral curve by the involution (z, h) 7→ (−z,−h).

Moreover, it is shown that the divisor which needs to be adjoined to the
generic fiber Fc in order to complete it into Tc consists of n translates of
the theta divisor.

In the case of n = 5 and of n = 6, the Abelian varieties are surfaces. For
these cases an alternative proof of algebraic integrability can be given using
the systematic method which was developed by Adler and van Moerbeke and
presented in its final form in [2]. In fact, it is precisely the periodic 5-particle
KM system which is used as a running example in [2] to present the method.
Accessorily it provides an alternative proof of the algebraic integrability in
the case n = 5. Similarly, such an alternative proof can be given in the case of
n = 6. In this paper we will not present such an alternative proof, but study
two compactifications of the fibers of the momentum map, using the known
fact that the system is algebraically integrable. Notice however that our
presentation will contain most elements, in particular all essential formulas,
needed for providing the alternative proof which we just mentioned.

The two compactifications which we will consider of the generic fiber Fc

are of a quite different character. The first one is the one which compact-
ifies Fc into the torus Tc. The six translates of the theta divisor (which

1When n is even, the fiber contains one or two isomorphic components, depending on
the precise choice of momentum map F; see Section 2 and in particular diagram (2.6) for
details in the case of n = 6.
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is in this case a curve, which can be identified with a quotient of the spec-
tral curve) intersect each other in a quite particular, symmetric pattern: if
we order the translates cyclically, every curve intersects its two neighboring
curves in two different points, is tangent to its two second nearest neighbors
and has two different intersection points with the remaining curve (its farest
neighbor). The other compactification is the standard homogeneous com-
pactification of the fiber, obtained by first compactifying C

6 in the standard
way to P

6 and then taking the closure F̄c of Fc in P
6. The resulting sur-

face is singular: the divisor which has been added consists of 6 non-singular
conics and three singular conics which are double lines and it is precisely
along these lines that the surface F̄c is singular. It will be clair that we
rely heavily on the KM vector field for obtaining the first compactification,
but not for the second one. Since the two compactifications are birationally
isomorphic, it would be interesting to obtain the first compactification in a
purely algebraic-geometrical way, i.e., without using the periodic 6-particle
KM vector field. Since in this case the singularities are clearly identified and
not too complicated, doing this may be feasible.

The plan of the paper is as follows. In Section 2 we recall the main results
on the integrability and algebraic integrability of the periodic n-particle KM
system and add some extra observations. An essential ingedient in the study
of algebraic integrable systems is the family of Laurent solutions to the vec-
tor field(s) of the system. We give explicit formulas for (the first terms of)
all Laurent solutions in Section 3. The principal balances (Laurent solu-
tion depending on 5 free parameters) are used in Section 4 to construct an
embedding of the generic Abelian surfaces Tc which compactify the generic
fibers Fc of the momentum map. The embedding allows us to compute an
equation for the 6 (isomorphic) curves which make up the Painlevé divisor.
This is done in Section 5, where we also relate the Painlevé curves to the
spectral curve. In the final Section 6 we present the two compactifications
of the generic surfaces Fc, with special attention to the geometry of the
divisors which are adjoined in both cases.

2. The periodic 6-particle KM system

In this section we recall from [6] and [5] the main results on the Liouville,
respectively algebraic integrability of the periodic n-particle Kac-van Moer-
beke (KM) system, which we specialize to the case of n = 6. We also add
a few extra observations which are specific to this case. The notions and
notations which are introduced here will be used throughout the paper.

The periodic 6-particle KM system is given by the following quadratic
vector field on C

6:

ẋi = xi(xi−1 − xi+1) , i = 1, . . . , 6 . (2.1)

Here, x1, . . . , x6 are the standard linear coordinates on C
6; also, x7 = x1

and x0 = x6, i.e., all indices are taken modulo 6. The latter accounts for
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the adjective periodic. It is a Hamiltonian system with linear Hamiltonian

H := x1 + x2 + · · ·+ x6 , (2.2)

and with a quadratic Poisson structure, defined by the following formulas:

{xi, xj} := xixj(δi,j+1 − δi+1,j) , i, j = 1, . . . , 6 .

Some basic constants of motion of (2.1) are found by using a Lax operator.
Indeed, (2.1) can be written as the following Lax equation with a spectral
parameter (which we denote by h),

L̇(h) = [L(h),M(h)] ,

where L(h) and M(h) are given by

L(h) =

















0 x1 0 0 0 h−1

1 0 x2 0 0 0
0 1 0 x3 0 0
0 0 1 0 x4 0
0 0 0 1 0 x5

hx6 0 0 0 1 0

















(2.3)

and

M(h) =

















0 0 x1x2 0 0 0
0 0 0 x2x3 0 0
0 0 0 0 x3x4 0
0 0 0 0 0 x4x5

hx5x6 0 0 0 0 0
0 hx6x1 0 0 0 0

















.

The characteristic polynomial of L(h) is given by

|zId6 − L(h)| = z6 − F1 z
4 + F2 z

2 −
1

h
(1 + F3 h)(1 + F4 h) , (2.4)

where the coefficients Fi are polynomial functions on C
6; they are explicitly

given by the following formulas:

F1 = x1 + x2 + x3 + x4 + x5 + x6 ,

F2 = x1x4 + x2x5 + x3x6 + x1x3 + x2x4 + x3x5 + x4x6 + x1x5 + x2x6 ,

F3 = x1x3x5 , (2.5)

F4 = x2x4x6 .

Notice that F1 is justH, the Hamiltonian of the system. By a basic property
of Lax equations, every coefficient (in z and h) of (2.4) is a constant of motion
of (2.1), hence the functions F1, . . . , F4 are constants of motion of (2.4). Both
F3 and F4 are Casimir functions of the Poisson structure, whose rank is 4
at a generic point of C6 (to be precise: the rank is 4 at all points, except
at those satisfying xi = xi+2 = 0 for some i ∈ {1, . . . , 6}). Also, F1 and F2

are in involution since F2 is a constant of motion of (2.1) and since H = F1;
it follows that the functions F1, . . . , F4 are pairwise in involution. Finally,
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they are also independent, so (C6, {· , ·} , (F1, . . . , F4)) defines a Liouville
integrable system. We view F := (F1, F2, F3, F4) as a polynomial map F :
C
6 → C

4, the momentum map of the integrable system. By what precedes,
for a generic point c ∈ C

4 the fiber Fc := F−1(c) of F is a smooth complex
surface to which the commuting Hamiltonian vector fields XF1

and XF2
are

tangent; moreover, these vector fields generate the tangent space to the
fiber Fc at each point. Finally, notice that the system is homogeneous,
i.e., the Poisson structure {· , ·}, the constants of motion F1, . . . , F4 and the
vector field XH are weight homogeneous when all variables xi are given
weight 1 and time t is given weight −1.

We now turn to the algebraic integrability of the system, which yields a
more precise description of the generic fiber Fc of F. By construction, the
characteristic polynomial of L(h) is constant on the fibers of F and we have
the following commutative triangle:

C
6

C
4 H6

F µ

ρ
2:1

(2.6)

In this diagram, H6 stands for the following space of Laurent polynomials:
{

fc(z, h) := z6 − c1 z
4 + c2 z

2 −
1

h
(1 + c3 h)(1 + c4 h) | c = (c1, . . . , c4) ∈ C

4

}

and ρ is defined for c ∈ C
4 by ρ(c) := fc(z, h); the definition of µ follows

from it: µ := ρ ◦ F. For c ∈ C
4 the Laurent polynomial fc defines an

algebraic curve, to wit the curve fc(z, h) = 0, which is called the spectral
curve. Setting

ν := 2c3c4h− z6 + c1z
4 − c2z

2 + c3 + c4 ,

one easily computes that the spectral curve is birationally isomorphic to the
affine algebraic curve Γc, defined by equation ν2 = gc(z

2), where

gc(τ) := τ(τ2 − c1τ + c2)(τ
3 − c1τ

2 + c2τ − 2(c3 + c4)) + (c3 − c4)
2 .

From this equation it is clear that Γc is for generic c a smooth hyperelliptic

curve of genus
[

2 deg gc−1
2

]

= deg gc − 1 = 5. Denoting the smooth compact-

ification of Γc by Γ̄c we have a ramified double cover π : Γ̄c → P
1. It is also

clear from the equation of Γc that Γ̄c has three different involutions: first
there is the hyperelliptic involution, defined on Γc by ı(z, ν) := (z,−ν); a
second involution is defined by σ(z, ν) := (−z, ν); since ı and σ commute, a
third involution is defined by their composition, τ(z, ν) := (−z,−ν). Setting
Γ̄σ
c := Γ̄c/σ and Γ̄τ

c := Γ̄c/τ the different curves can be represented by the
following diagram:
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Γ̄c

Γ̄τ
c Γ̄σ

c

P
1

π

πτ πσ

All maps in this diagram are double covers, with 12, 4, 0 ramification points
for π, πτ and πσ respectively. It follows that Γ̄τ

c
has genus 2 and that Γ̄σ

c
has

genus 3 (and that Γ̄c has genus 5, but we know that already). An explicit
equation for an affine part of the quotient curves Γ̄τ

c and Γ̄σ
c is respectively

given by
Γτ
c : v2 = gc(u) , Γτ

c : v2 = ugc(u) .

Of course these quotient curves are also hyperelliptic, with their hyperelliptic
involution (u, v) 7→ (u,−v) induced by ı. The three involutions and the
corresponding quotient curves play an important role in the description of
the fibers of the momentum map F of the periodic 6-particle KM system:

Proposition 2.1 ([5]). For generic c ∈ C
4, the fiber Fc of the momentum

map F = (F1, . . . , F4) : C6 → C
4, with the Fi given by (2.5), is an affine

part of
Prym(Γ̄c/Γ

σ
c
) ≃ Jac(Γ̄τ

c
) ,

obtained by removing 6 translates of the theta divisor. Moreover, the vector
fields XF1

and XF2
are translation invariant on these tori.

We denote the divisor consisting of the 6 translates of the theta divisor
by Dc and we denote the complete Abelian surface, which we may think of
as a Prym variety or as a hyperelliptic Jacobian, by Tc. Thus, Fc = Tc\Dc.

The genericity condition on c in Proposition 2.1 can be made precise:
the statement of the proposition holds precisely for those c ∈ C

4 for which
the affine curve Γc is smooth. In what follows we will not need this precise
description: we will only use that for generic c ∈ C

4 the curves Γc, Γτ
c

and Γσ
c
are smooth and that Proposition 2.1 holds for such c. Also, in view

of Diagram (2.6) and Proposition 2.1, the fibers of the momentum map µ
over a generic Laurent polynomial fc ∈ H6 consists of the disjoint union of
the isomorphic fibers Fc and Fc′ , where c

′ is obtained from c by permuting
c3 and c4; thus, it is sufficient to study the fibers of F and we will not
consider the fibers of µ in what follows.

3. Laurent solutions

In this section we determine all Laurent solutions of the periodic 6-particle
KM vector field

ẋi = xi(xi−1 − xi+1) , i = 1, . . . , 6 , (3.1)
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where we recall that the indices are taken modulo 6 (so that for example
x7 = x1 and x0 = x6). A Laurent solution to (3.1) is a 6-tuple of convergent
(for small t 6= 0) Laurent series

xi(t) =
1

tri

∞
∑

j=0

a
(j)
i tj , ri ∈ Z , i = 1, . . . , 6 ,

which yield a formal solution to (3.1). As we will see, the coefficients of
these series depend polynomially on several parameters, where the parame-
ter space is an affine variety which is not irreducible. The Laurent solutions
to (3.1) are therefore naturally organized in irreducible families, i.e., families
of Laurent solutions, parametrized by an irreducible affine variety. An irre-
ducible family parametrized by an affine variety of dimension n− 1 is called
a principal balance; the other balances are called lower balances. Accord-
ing to the following theorem, known as the Kowalevski-Painlevé Criterion,
every irreducible2 a.c.i. system, such as the periodic 6-particle KM system,
admits one or several principal balances.

Theorem 3.1 ([2, Theorem 6.13]). Let (Cn, {· , ·} ,F) be an irreducible, poly-
nomial a.c.i. system, where F = (F1, . . . , Fs) and let (x1, . . . , xn) be a system
of linear coordinates on C

n. Let X be any one of the integrable vector fields
XF1

, . . . ,XFs
. For every 1 6 i 6 n such that xi is not constant along the

integral curves of X there exists a principal balance x(t) = (x1(t), . . . , xn(t))
for which xi(t) has a pole.

Since the KM system is homogeneous, it is natural to look for weight
homogeneous Laurent solutions of (3.1), i.e., Laurent solutions for which
the pole order of xi(t) is at most the weight of the variable xi, which is 1 for
all variables xi of the KM system (see Section 2; also, see [2, Section 7] for
more information on (weight) homogeneous systems and Laurent solutions).
We show in the following proposition by a simple argument that all Laurent
solutions to the KM system are weight homogeneous.

Proposition 3.2. Let

xi(t) =
1

tr

∞
∑

j=0

a
(j)
i tj , i = 1, . . . , 6 , (3.2)

be a strict Laurent solution to the periodic n-particle KM system, where

a
(0)
i 6= 0 for at least one index i. Then r = 1.

Proof. Suppose that a (3.2) is a strict Laurent solution, i.e., with r > 1

(otherwise it would be a Taylor solution). Notice that not all a
(0)
i with i

odd can be different from zero because the product x1x3x5 is a constant of

2An a.c.i. system is said to be irreducible if for generic c the Abelian variety compacti-
fying the fiber Fc of its momentum map F is a simple Abelian variety, i.e., it contains no
proper Abelian subvarieties.
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motion of (3.2), and so x1(t)x3(t)x5(t) is independent of t. Similarly, not all

a
(0)
i with i even can be different from zero. It follows that there exists an

index i such that exactly one of a
(0)
i−1 and a

(0)
i+1 has a pole order r (and so

the pole order of the other one is smaller). Since xi(t) is not identically zero
(xi is not a constant of motion), we may consider ẋi(t)/xi(t) which has at
most a simple pole, but is in view of (3.1) equal to xi−1(t)− xi+1(t), which
has pole of order r. Hence r = 1 as was to be shown. �

It follows that all Laurent solutions to (3.1) are weight homogeneous, can
be algorithmically computed (see [2, Proposition 7.6]) and are convergent
(see [2, Theorem 7.25]). Setting

xi(t) =
1

t

∞
∑

j=0

a
(j)
i tj , i = 1, . . . , 6 , (3.3)

one first solves the indicial equations which are the non-linear equations
obtained by substituting the Laurent solutions (3.3) in (3.1) and equating
the lowest order terms, i.e., the terms in t−2. The result is the following
system of quadratic equations:

−a
(0)
i = a

(0)
i

(

a
(0)
i−1 − a

(0)
i+1

)

, i = 1, . . . , 6 . (3.4)

All non-zero solutions of (3.4) are easily found as follows. First recall from

the proof of Proposition 3.2 that a
(0)
i = 0 for at least one odd and for at least

one even value of i. We may therefore assume (by a cyclic permutation of the

indices, if needed) that a
(0)
1 6= 0 and that a

(0)
6 = 0. Then a

(0)
3 = 0 or a

(0)
5 = 0.

When a
(0)
3 = 0, the remaining equations in (3.4) lead to a

(0)
1 = −a

(0)
2 = −1,

and
(a

(0)
5 = 1 or a

(0)
4 = 0) and (a

(0)
4 = −1 or a

(0)
5 = 0) ,

which leads to two solutions with a
(0)
1 6= 0 and a

(0)
6 = 0, to wit a(0) =

(−1, 1, 0,−1, 1, 0) and a(0) = (−1, 1, 0, 0, 0, 0). Similarly, when a
(0)
5 = 0 we

find a single new solution a(0) = (−2, 1,−1, 2, 0, 0). The upshot is that
the indicial equations have 15 non-trivial solutions, to wit (−1, 1, 0, 0, 0, 0),
(−1, 1, 0,−1, 1, 0), (−2, 1,−1, 2, 0, 0) and their cyclic permutations (notice
that the second solution has only three different cyclic permutations).

Having determined all possibilities for the leading coefficients of the Lau-
rent series xi(t), we need to investigate the existence of the subsequent terms
in the series as well as their dependence on free parameters. This has to be
done seperately for each solution a(0) to the indicial equations. Thanks to
the order 6 symmetry, we only need to consider the above three particular

solutions. In each case, the subsequent terms a
(k)
i are for k = 1, 2, 3, . . .

determined by the following linear problem:
(

kId6 −K(a(0))
)

a(k) = R(k) , (3.5)
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where K(a(0)) is the Kowalevski matrix, evaluated at a(0) and R(k) is a

column vector of polynomials which depends on the coefficients a
(j)
1 , . . . , a

(j)
6

with 0 6 j < k only. Thanks to homogeneity, the Kowalevski matrix is just
the sum of the Jacobian matrix of the right hand side of (3.1), evaluated at

a(0), plus the identity matrix (see [2, Proposition 7.6] for the formula for the

Kowalevski matrix in the general weight homogeneous case), namely K(a(0))
is given by


















a
(0)
6 − a

(0)
2 + 1 −a

(0)
1 0 0 0 a

(0)
1

a
(0)
2 a

(0)
1 − a

(0)
3 + 1 −a

(0)
2 0 0 0

0 a
(0)
3 a

(0)
2 − a

(0)
4 + 1 −a

(0)
3 0 0

0 0 a
(0)
4 a

(0)
3 − a

(0)
5 + 1 −a

(0)
4 0

0 0 0 a
(0)
5 a

(0)
4 − a

(0)
6 + 1 −a

(0)
5

−a
(0)
6 0 0 0 a

(0)
6 a

(0)
5 − a

(0)
1 + 1



















.

For most values of k, namely for those which do not belong to the spectrum
of K(a(0)) the linear equation (3.5) has a unique solution. When k is an

eigenvalue of K(a(0)) of multiplicity µk, we can get at most µk free param-
eters at step k; in fact, it may happen that for the solvability of (3.5) one
needs to impose conditions on R(k), i.e. on the free parameters which have
been introduced in the previous steps, or it may even happen that (3.5)
has no solution at all, independently of the values of those free parameters,
which means that there is no Laurent solution with a(0) as leading coeffi-
cients. We will see that in the present case, the number of free parameters
at each step k is equal to the multiplicity of k as an eigenvalue of K(a(0)),

for any of the values of a(0) that we have found.

In order to do this, we first compute the characteristic polynomial of
K(a(0)) for the above three particular values of a(0). To start with, consider

K(−1, 1, 0, 0, 0, 0) =

















0 1 0 0 0 −1
1 0 −1 0 0 0
0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 2

















.

Thanks to the almost upper triangular form of this matrix, we obtain at
once the following formula for its characteristic polynomial:

χ(K(−1, 1, 0, 0, 0, 0), λ) = (λ+ 1)(λ− 1)3(λ− 2)2 .

Similarly, one obtains

χ(K(−2, 1,−1, 2, 0, 0), λ) = (λ+ 2)(λ+ 1)(λ − 1)(λ − 2)(λ− 3)2 ,

χ(K(−1, 1, 0,−1, 1, 0), λ) = (λ+ 1)2(λ− 1)2(λ− 3)2 .

In the first case we have 5 positive eigenvalues, while there are only 4 positive
eigenvalues in the two other cases. So only the first case can lead to principal
balances; however we know that the system is a.c.i., hence it must have
principal balances (Theorem 3.1), and so a(0) = (−1, 1, 0, 0, 0, 0) leads —
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just like its cyclic permutations — to a principal balance. We exhibit the
first few terms of it, for future use:

x1(t) = −
1

t
+ a−

1

3
(a2 − 2d+ e)t−

1

8
(8ad− be− 3cd)t2 +O(t3) ,

x2(t) =
1

t
+ a+

1

3
(a2 + d− 2e)t−

1

8
(8ae − 3be− cd)t2 +O(t3) ,

x3(t) = et+ e(a− b)t2 +O(t3) ,

x4(t) = b− bct−
b

2
(bc− c2 − e)t2 +O(t3) , (3.6)

x5(t) = c+ bct+
c

2
(b2 − bc+ d)t2 +O(t3) ,

x6(t) = −dt+ d(a− c)t2 +O(t3) .

In these formulas, a, b, . . . , e are the five free parameters; a, b and c appear at
the first step, while c and d appear at the second step, in agreement with the
eigenvalues of the Kowalevski matrix. The subsequent terms are completely
determined by the displayed terms because 2 is the largest eigenvalue.

For a(0) = (−2, 1,−1, 2, 0, 0) we get a lower balance, depending on 4 free
parameters a, b, c, d, appearing at steps 1, 2 and 3. For future use, we also
give its first few terms:

x1(t) = −
2

t
+ 2a− 2bt− 2ct2 +O(t3) ,

x2(t) =
1

t
+ a+ (a2 − 2b)t+ (a3 − 3ab− 3c+ d)t2 +O(t3) ,

x3(t) = −
1

t
+ a− (a2 − 2b)t+ (3ab− a3 + 7c− 3d)t2 +O(t3) ,

x4(t) =
2

t
+ 2a+ 2bt+ (12ab − 4a3 + 18c− 8d)t2 +O(t3) , (3.7)

x5(t) = (4a3 − 12ab− 20c+ 9d)t2 +O(t3) ,

x6(t) = dt2 +O(t3) .

Finally, for a(0) = (−1, 1, 0,−1, 1, 0) we also get a lower balance, depending
on 4 free parameters a, b, c, d, which appear at steps 1 and 3. Its first few
terms are given by

x1(t) = −
1

t
− b−

b2

3
t+ (c− 3d)t2 +O(t3) ,

x2(t) =
1

t
− b+

b2

3
t− dt2 +O(t3) ,

x3(t) = ct2 +O(t3) ,
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x4(t) = −
1

t
+ a−

a2

3
t− dt2 +O(t3) , (3.8)

x5(t) =
1

t
+ a+

a2

3
t+ (c− 3d)t2 +O(t3) ,

x6(t) = (8d− 3c)t2 +O(t3) .

4. Embedding the Abelian surfaces

We now construct a projective embedding of the Abelian surfaces Tc

which compactify the generic fiber Fc of the momentum map of the periodic
6-particle KM system. To do this, we use the methods developed in [2],
which we recall here and which we adapt to this system; there are some
simplifications due to the fact that we know already that the latter system
is an irreducible a.c.i. system.

First, recall that by definition every complex Abelian variety embeds in
projective space and that such an embedding can be constructed by using the
sections of a very ample line bundle on it; in the case of Abelian variety the
third power of any ample line bundle suffices. In the present case, the generic
fiber Fc of the momentum map is an affine part of a hyperelliptic Jacobian
and the divisor to be adjoined to Fc to complete it into the torus Tc consists
of 6 translates of the theta divisor, so it is very ample. We will therefore
look for a basis of the sections of the line bundle defined by the divisor at
infinity. Said differently, we look for meromorphic functions on the fiber,
having at most a simple pole along the divisor at infinity. According to [2,
Proposition 6.14] this can be done using the Laurent solutions: if we denote
in the present case by x(t;Di) the family of Laurent solutions corresponding
to a Painlevé wall3 Di and f is a rational function of x1, . . . , x6 then the pole
order (in t) of f(x(t;Di)) equals, for generic c ∈ C

4, the pole order of f ,
viewed as a meromorphic function on Tc, along Di

c
. For example, it suffices

to look at the pole orders of the Laurent series (3.6) to determine the divisor
of zeros and poles of the coordinate functions x1, . . . , x6, restricted to the
generic Abelian surface Tc. The result is displayed in Table 1.

In it, the labelings of the Painlevé walls Di are chosen such that x(t;D1)
is the principal balance (3.6) and the other labelings are obtained by a cyclic
permutation of the variables, i.e., xi(t,D

2) = xi−1(t,D
1), and so on. In a

single formula, the table can be summarized by

(xi)|Tc
= Di+1

c
−Di

c
−Di−1

c
+Di−2

c
.

From this formula we can for example conclude that the divisors Di
c +Di−1

c

and Di+1
c +Di−2

c are linearly equivalent for all i.

3Roughly speaking, the Painlevé wall Di is the collection of Painlevé divisors Di

c
, with

c ∈ C
4 generic; see [2, Chapter 6] for a precise description of Di as a divisor on a partial

compactification of phase space.
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D1
c D2

c D3
c D4

c D5
c D6

c

x1 −1 1 0 0 1 −1

x2 −1 −1 1 0 0 1

x3 1 −1 −1 1 0 0

x4 0 1 −1 −1 1 0

x5 0 0 1 −1 −1 1

x6 1 0 0 1 −1 −1

Table 1. The divisor of zeros and poles of the coordinate
functions x1, . . . , x6, restricted to the generic Abelian sur-
face Tc.

k dimF (k) dimH(k) dimZ(k) # dep ζk indep. functions

0 1 1 1 0 1 z0

1 6 1 6 1 5 z1, . . . , z5

2 21 2 15 7 8 z6, . . . , z13

3 56 4 32 22 10 z14, . . . , z23

4 126 5 57 51 6 z24, . . . , z29

5 252 7 96 90 6 z30, . . . , z35

6 462 11 144 144 0 —

Table 2. Computing a basis for the polynomials of degree at
most 6 which have a simple pole at most when any principal
balance x(t) is substituted in them.

Of course, the coordinate functions x1, . . . , x6 and the constant function 1
are the first elements of the polynomial functions we are looking for. In or-
der to find the other such polynomials f , one proceeds by the degree d of f ,
looking for the most general polynomial of degree d such that f(x(t;Di))
has at most a simple pole (in t) for all i. Notice that we can take f to be
homogeneous, because when f has the desired property, then by homogene-
ity every homogeneous component of f will also have this property. A more
delicate issue is that we will find some polynomials which are dependent
on the previously found polynomials, when restricted to the tori; in fact, if
one multiplies any polynomial with the desired property with a constant of
motion, the product will still have the desired property, without leading to
a new meromorphic function, when restricted to the tori. The results of the
process are summarized in Table 2: In the table are displayed, for small k,
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the following data, corresponding to the different columns (in that order).

(1) dimF (k), the number of linearly independent monomials of degree k;

it is computed from the formula dimF (k) =
(

k+5
5

)

;

(2) dimH(k), the number of linearly independent constants of motion of
degree k; it is the coefficient in tk of ((1− t)(1− t2)(1 − t3)2)−1;

(3) dimZ(k), the number of linearly independent polynomials having a
simple pole at most when the principal balances are substituted in
them; for computing this, a computer program is very useful;

(4) The number of linearly independent elements in Z(k) that are de-
pendent of the previous ones over H. This is number is computed
from the previous data by the formula

∑i−1
j=0 ζj dimH(i−j);

(5) ζk, the number of linearly independent elements in Z(k) that are
independent of the previous ones over H; it is computed as the dif-
ference of the two previous columns;

(6) The last column gives a choice of these new functions; their explicit
expressions are given below.

We now list the functions zi and explain why we need not look at polynomi-
als of higher degree. In degree zero we have the constant function z0 := 1;
in degree one all coordinate functions x1, . . . , x6 have a simple pole at most
when the principal balances are substituted in them, but they are not inde-
pendent over the Hamiltonians, since their sum is the Hamiltonian H1. So
we set zi := xi for i = 1, . . . , 5. The 8 quadratic polynomials are given by

z6 := x1x4 , z7 := x2x5 , z8 := x3x6 , z9 := x1x3 ,
z10 := x2x4 , z11 := x3x5 , z12 := x4x6 , z13 := x1x5 ,

while the 10 cubic polynomials are given by

z14 := x1x2x3 , z15 := x2x3x4 , z16 := x3x4x5 ,
z17 := x4x5x6 , z18 := x1x5x6 , z19 := x1x2x6 ,
z20 := x1x3(x1 + x6) , z21 := x2x4(x1 + x2) ,
z22 := x3x5(x3 + x2) , z23 := x4x6(x4 + x3) .

Next follow the 6 quartic polynomials,

z24 := x1x2x3x4 , z25 := x2x3x4x5 , z26 := x3x4x5x6 ,
z27 := x1x4x5x6 , z28 := x1x2x5x6 , z29 := x1x2x3x6 ,

and the 6 quintic polynomials

z30 := x21x2x
2
3 , z31 := x22x3x

2
4 , z32 := x23x4x

2
5 ,

z33 := x24x5x
2
6 , z34 := x25x6x

2
1 , z35 := x1x2x3x4(x1 + x2) .

Notice that these polynomials are all either monomials or binomials, which
makes it very easy to determine their leading behaviour; in fact, for the 30
monomials it suffices to look at Table 1 to verify that along any of the six
curves Di

c
their pole order is at most one!

On the generic torus Tc, which is a Jacobian surface, we have 36 indepen-
dent functions with a simple pole at most along the divisor at infinity. Since
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this divisors consists of 6 translates of the theta divisor, it defines a polariza-
tion of type (6, 6) on the Abelian surface, and so dimH0(Tc,Dc) = 62 = 36.
Therefore, we have constructed a basis of this space and the given func-
tion provide an embedding of the generic torus Tc in P

35. We will use this
embedding to determine the intersection pattern of these 6 theta translates.

5. The spectral and Painlevé curves

Recall that for generic c ∈ C
4 we denote by Fc the fiber F−1(c) of the

momentum map F : C6 → C
4, by Tc its completion into an Abelian surface

and by Dc the divisor of Tc which has been added to do this completion. As
we have seen, the divisor Dc has six irreducible components, which are the
Painlevé curves Di

c
, i = 1, . . . , 6. These 6 curves are isomorphic, so in order

to compute an affine equation for the Painlevé curves, it suffices to compute
the equation for one of them; yet, as we will see in the next section, some
care has to be taken when considering the 6 different projective embeddings
of these curves, rather than the isomorphism class which they define.

In order to compute an affine equation for one of the Di
c
, one fixes

c = (c1, . . . , c4) and substitutes the principal balance (3.6) of (3.1) in the
equations Hj = cj , for j = 1, . . . , 4. Since Hj is a constant of motion,
Hj(x(t)) is independent of t, hence depends on the free parameters a, . . . , e
only. We therefore get 4 polynomial equations in these parameters, and they
give equations for an affine part of any one of the Painlevé curves. Notice
that due to the simple form of the Hamiltonians, we only need to substitute
the first two terms of the Laurent series (3.6) in H1 = c1, the first three
terms in H2 = c2 and the leading terms in H3 = c3 and in H4 = c4. One
obtains the following equations:

2a+ b+ c = c1 ,

2a(b + c)− d− e = c2 ,

−ce = c3 , (5.1)

−bd = c4 .

This curve is called the (abstract) Painlevé curve; we denote it by ∆c. Solv-
ing the first and last two equations linearly for a, b and c and substituting
the results in the second equation yields, after clearing the denominator, the
following equation for a curve, birationally equivalent to ∆c:

d2e2(e+ d+ c2) + (c3d+ c4e)(c1de+ c3d+ c4e) = 0 . (5.2)

We show that this curve is also birationally equivalent to the curve Γτ
c
, which

we constructed as a quotient of the spectral curve Γc. Recall from Section 2
that an equation for Γτ

c is given by

v2 = u(u2 − c1u+ c2)(u
3 − c1u

2 + c2u− 2(c3 + c4)) + (c3 − c4)
2 . (5.3)
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The birational map is given by

u = −
c3
e
−
c4
d

, v = −
d2e(d+ e+ c2) + c1d(c3d+ c4e) + c4(2c3d+ (c3 + c4)e)

dc3
,

with inverse map

d, e = −
1

2

(

u2 − c1u+ c2 ±
v − c3 + c4

u

)

,

where the plus sign corresponds to d and the minus sign to e. These formulas
are easily checked by direct computation; to find the above map, one can for
example write (5.2) in Weierstraß form and then rescale the variables so as
to make the equation match with the Weierstraß form (5.3) of Γτ

c
. The fact

that the compactified Painlevé curve corresponding to c is isomorphic to Γ̄τ
c

is not surprizing since on the one hand the Painlevé curve is a divisor of the
torus Tc and on the other hand Tc is isomorphic to the Jacobian of Γ̄τ

c
.

We will need in the next section the points at infinity of (5.1), i.e., the
points needed to complete the affine curve defined by (5.1) into a compact
Riemann surface. We will in fact need a local parametrization around each
of these points. It is important that we do this with the representation
of the curve in terms of the parameters which appear in the Laurent se-
ries, rather than using some (possibly simpler) birational model, such as
(5.2), because the embedding of Tc was constructed by using the Laurent
solutions, and so the corresponding embeddings of the curve which we will
construct will also be expressed in terms of these parameters. In order to
find these parametrizations, it suffices to first observe that bcde 6= 0 for any
affine point (recall that c is generic), so that for the points at infinity at
least one of the parameters b, c, d, e must be zero; also notice that b and d
cannot vanish at the same time, and similarly for c and e. In fact, out of
c and e exactly one has to vanish, and similarly for b and d. For each of
the four possibilities we find a single parametrization, except when d and
e vanish, in which case we find two parametrizations. Thus we have five
points at infinity. Local parametrizations around these points are given by
the following list (we only give the parametrization for two of the variables;
one easily derives from them parametrizations for the other variables by
using (5.1)):

∞1 : e = −c3τ , d = c4τ(1 + βτ) +O(τ3) ,
∞2 : e = −c3τ , d = c4τ(1 + (c1 − β)τ) +O(τ3) ,
∞3 : b = c4τ , c = −c3τ(1 + c2τ + (c1c3 − c1c4 + c22)τ

2) +O(τ4) ,
∞4 : d = c4τ , c = c3τ

2(1− c1τ) +O(τ4) ,
∞5 : e = c3τ , b = c4τ

2(1− c1τ) +O(τ4) .

In the first two formulas, β stands for the same root of the quadratic poly-
nomial β2 − c1β + c2; picking the other root just amounts to permuting the
two points ∞1 and ∞2.
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It is also useful to restrict the lower balances to the generic fibers Fc.
When doing so, one gets explicit formulas for the four free parameters in
terms of the 4 constants c1, . . . , c4, so that the Laurent solutions can be
entirely expressed in terms of the latter constants. For the lower balances
(3.7), the resulting Laurent solutions are given by

x1(t) = −
2

t
+

c1
3

−
1

18
(c21 − 3c2)t+

1

540
(2c31 − 9c1c2 + 27c3 − 243c4)t

2 +O(t3) ,

x2(t) =
1

t
+

c1
6

−
1

36
(c21 − 6c2)t−

1

1080
(4c31 − 18c1c2 − 81c3 + 189c4)t

2 +O(t3) ,

x3(t) = −
1

t
+

c1
6

+
1

36
(c21 − 6c2)t−

1

1080
(4c31 − 18c1c2 + 189c3 − 81c4)t

2 +O(t3) ,

x4(t) =
2

t
+

c1
3

+
1

18
(c21 − 3c2)t+

1

540
(2c31 − 9c1c2 − 243c3 + 27c4)t

2 +O(t3) ,

x5(t) =
c3
2
t2 +O(t3) ,

x6(t) =
c4
2
t2 +O(t3) ,

while for the lower balances (3.8) they are given by

x1(t) = −
1

t
+

β

2
−

β2

12
t+

1

8
(3c3 + c4)t

2 +O(t3) ,

x2(t) =
1

t
+

β

2
+

β2

12
t+

1

8
(c3 + 3c4)t

2 +O(t3) ,

x3(t) = −c4t
2 +O(t3) ,

x4(t) = −
1

t
−

1

2
(β − c1)−

1

12
(β − c1)

2t+
1

8
(c3 + 3c4)t

2 +O(t3) ,

x5(t) =
1

t
−

1

2
(β − c1) +

1

12
(β − c1)

2t+
1

8
(3c3 + c4)t

2 +O(t3) ,

x6(t) = −c3t
2 +O(t3) ,

where β is any root of he quadratic polynomial β2 − c1β + c2. Notice that
this means that, restricted to the generic fiber Fc we do not have just three
but six of the latter lower balances. This will be reflected in the geometry
of the divisor at infinity.

In order to obtain from these formulas the formulas for all lower balances
one uses the order six automorphism, but one should not forget that it
permutes also the constants c3 and c4.

6. The configuration of Painlevé curves

In this section we use the embedding of the Abelian surfaces Tc in P
35

to construct six projective embeddings of the smooth Painlevé curve ∆c,
which we recall is birationally isomorphic to the smooth genus 2 curve Γτ

c
.

We will then be able to determine the intersection pattern of the 6 com-
pleted image curves which make up the Painlevé divisor Dc of Tc. To do
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this, we first substitute the principal balance (3.6) in the embedding func-
tions z0, . . . , z35, constructed in Section 4, which gives an embedding of a
neighborhood in Tc of an affine part of the embedded curve, times a neigh-
borhood of 0, corresponding to time t (the parameter of the integral curves
of the vector field XH). Setting t = 0 in this embedding yields an embedding
of an affine part of the curve D1

c. Notice that the components of this em-
bedding are just the residues of the Laurent series z0(t), . . . , z35(t) since all
these series have a simple pole at worst for t = 0. Writing P as a shorthand
for (a, b, c, d, e), the resulting map, which we denote by γ1, is given by

γ1(P ) = (0 : −1 : 1 : 03 : −b : c : 02 : b : 02 : −c : −e : 04 : d : e :

2ab : 02 : −be : 03 : cd : 0 : e2 : b2e : 02 : −c2d : −2abe) .

We have used the convenient notation 0i to denote that i successive coor-
dinates are zero. Notice that γ1 is clearly injective, and so is indeed an
embedding of the affine curve. Similarly, the embedding γi of D

i
c
is found

by substituting the corresponding principal balance in the embedding func-
tions z0, . . . , z35; to determine this principal balance, it suffices to do a cyclic
permutation in (3.6) of the indices of the variables xj, just replacing x1 by
xi and so on. The five other embeddings that one obtains are given by

γ2(P ) = (02 : −1 : 1 : 03 : −b : c : 02 : b : 02 : d : −e : 05 : e :

2ab : 02 : −be : 03 : cd : −d2 : e2 : b2e : 02 : −ed) ,

γ3(P ) = (03 : −1 : 1 : 0 : c : 0 : −b : −c : 02 : b : 02 : d : −e : 03 : −c(b+ c) :

0 : e : 2ab : cd : 0 : −be : 03 : −c2d : −d2 : e2 : b2e : 0 : c2d) ,

γ4(P ) = (04 : −1 : 1 : −b : c : 02 : −c : 02 : b : 02 : d : −e : 03 : −c(c+ b) :

0 : e : 0 : cd : 0 : −be : 03 : −c2d : −d2 : e2 : b2e : 0) ,

γ5(P ) = (05 : −1 : 0 : −b : c : 02 : −c : 05 : d : −e : 03 : −c(b+ c) :

03 : cd : 0 : −be : 03 : −c2d : −d2 : e2 : 0) ,

γ6(P ) = (0 : 1 : 04 : c : 0 : −b : b : 02 : −c : 05 : d : −e : 2ab : 02 :

−c(c+ b) : 03 : cd : 0 : −be : b2e : 02 : −c2d : −d2 : bce) .

It is easy to see that the different images of these embeddings do not inter-
sect. For example, Im(γ1) and Im(γ2) cannot intersect because all points in
Im(γ1) have their second coordinate different from zero, while that coordi-
nate vanishes for all points of Im(γ2).

Since the polynomials z0, . . . , z35 provide (upon restriction) an embedding
of Tc, the embeddings γ1, . . . , γ6 of the affine curve can be holomorphically
extended to its smooth compactification; as we will see, the extension is
an embedding of the complete curve, so that the six image curves are non-
singular, but these image curves will intersect in several points according to
a pattern which we will determine.

To do this, recall from Section 5 that we have determined parametriza-
tions of a neighborhood of each one of points at infinity ∞1, . . . ,∞5 of the
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D1
c

D2
c

D3
c

D4
c

D5
c

D6
c

D1
c = P26, P13 P13 P14, P

′

14 P15 P26, P15

D2
c

P26, P13 = P13, P24 P24 P25, P
′

25 P26

D3
c

P13 P13, P24 = P24, P35 P35 P36, P
′

36

D4
c

P14, P
′

14 P24 P24, P35 = P35, P46 P46

D5
c P15 P25, P

′

25 P35 P35, P46 = P46, P15

D6
c P26, P15 P26 P36, P

′

36 P46 P46, P15 =

Table 3. The irreducible components Di
c of the Painlevé

divisor intersect in two points which may coincide, in which
case the two components are tangent.

Painlevé curves ∆c. If we substitute the parametrization of one of these
points ∞i in either one of the embeddings γj we get an embedding of a
punctured neighborhood of ∞i in P

35 and it suffices to let the parameter
τ of the parametrization tend to 0 to find the image point in P

35. Doing
this for the embedding γ1 we find 5 different points, which confirms that
the six irreducible components of Dc are non-singular curves (of genus 2),
isomorphic to Γc. Namely, we find the following images:

∞1 7→ (06 : 1 : 1 : 02 : −1 : 02 : −1 : 07 : β − c1 : 09 : −c3 : 02 : −c4 : 0)

∞2 7→ (06 : 1 : 1 : 02 : −1 : 02 : −1 : 07 : −β : 09 : −c3 : 02 : −c4 : 0)

∞3 7→ (030 : 1 : 05)

∞4 7→ (030 : 1 : −1 : 03 : −1)

∞5 7→ (034 : 1 : 0)

When the other embeddings γj are used we find in total 30 image points,
but they are not all different, as some appear twice and the others three
times. In total we find 12 different image points, as indicated in Table 3.
The coordinates of the 6 points of the form Pij with j − i ∈ {2, 4} are given
by

P13 = (030 : 1 : −1 : 03 : −1) , P24 = (031 : 1 : −1 : 03) ,

P15 = (034 : 1 : 0) , P26 = (030 : 1 : 05) ,

P35 = (032 : 1 : −1 : 02) , P46 = (033 : 1 : −1 : 0) ,
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while the points Pi,i+3 have as coordinates

P14 = (06 : 1 : 1 : 02 : −1 : 02 : −1 : 07 : −β : 09 : −c3 : 02 : −c4 : 0) ,

P25 = (07 : 1 : 1 : 02 : −1 : 010 : −β : 09 : −c4 : 03) ,

P36 = (06 : 1 : 0 : 1 : −1 : 02 : −1 : 07 : −β : 02 : β − c1 : 06 : −c4 : 02 : −c3 : 0 : c4) .

For i = 1, . . . , 3, the coordinates of the point P ′

i,i+3 are obtained by replacing

β by c1 − β in the coordinates of the point Pi,i+3 (i.e., replace β, which
is a root of the quadratic polynomial β2 − c1β + c2, by the other root).
These 12 points are also obtained when substituting the 12 lower balances
in the embedding. Namely, the points Pij with j − i 6= 3 are obtained by
substituting the 6 cyclic permutations of (3.7) in the embedding, the points
Pi,i+3 are obtained similarly by using the 3 cyclic permutations of (3.8) while
the points P ′

i,i+3 are obtained as the points Pi,i+3, but with β replaced by

the other root c1 − β of the polynomial β2 − c1β + c2.

It is clear that we have chosen the notations as follows: when j−i ∈ {2, 4}

then the point Pij is the unique intersection point of Di
c and Dj

c, so the

curves Di
c and Dj

c are tangent at Pij ; another component passes transversally

through this point, namely Di+1
c in case j = i+2 and Dj+1

c when j = i+4.
Also, the points Pi,i+3 and P ′

i,i+3 are the unique intersection points of Di
c

and Di+3
c

and no other curve of the divisor passes through them. With this
notation, Di

c
contains the points Pi,i+2, Pi−2,i , Pi−1,i+1 , Pi,i+3 and P ′

i,i+3.

Though the table contains all information on the intersection pattern of
the curves Di

c
a few pictures may help to visualize this pattern. First, here

is the intersection pattern of D1
c
with a neighbor, a second nearest neighbor

and its farest neighbor.

D1
c

D2
c

P26

P13

D1
c

D3
c

P13

D1
c

D4
c

P14

P ′

14

Figure 1. Each Painlevé curve Di is tangent to its second
nearest neighbors and intersects the other Painlevé curves in
two points.

Secondly, we display the intersection pattern of D1
c
with two other curves.

There are three essentially different possibilities, according to whether the
configuration contains three, two or no consecutive curves.
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D1
c

D3
c

D2
c

P13

P26 P24

D1
c

D3
c

D5
c

P13

P15

P35

D1
c

D3
c

D4
c

P13

P ′

14 P24

P14 P35

Figure 2. For three Painlevé curves there are three possible
intersection patterns.

It is also instructive to picture one single Dc, say D1
c, with its 5 points at

infinity, as well as arcs of the other Di
c passing through them:

D1
c

D2
c

D6
c

D3
c

D5
c

D4
c

P14

P13

P26

P15

P ′

14

Figure 3. The intersection pattern of one of the Painlevé
curves with all the other Painlevé curves.
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We compare this configuration to a similar configuration of the divisor
needed for another natural — but singular — compactification of the generic
fiber Fc of the momentum map F : C6 → C

4. It is obtained by introducing
an extra variable x0 and making the affine equations for Fc homogeneous,
i.e., to consider the compact surface F̄c ⊂ P

6, given by

x1 + x2 + x3 + x4 + x5 + x6 = c1x0 ,

x1x4 + x2x5 + x3x6 + x1x3 + x2x4 + x3x5 + x4x6 + x1x5 + x2x6 = c2x
2
0 ,

x1x3x5 = c3x
3
0 , (6.1)

x2x4x6 = c4x
3
0 .

Since c is generic in the sense that the affine part Fc of F̄c is non-singular,
all singularities of Fc are at infinity, i.e., are contained in the divisor C :=
F̄c\Fc. Equations for C are obtained by intersecting F̄c with the hyperplane
x0 = 0, giving the following equations (they are independent of c, which is
the reason why we do not add an index c to C):

x1 + x2 + x3 + x4 + x5 + x6 = 0 ,

x1x4 + x2x5 + x3x6 + x1x3 + x2x4 + x3x5 + x4x6 + x1x5 + x2x6 = 0 ,

x1x3x5 = 0 , (6.2)

x2x4x6 = 0 .

Starting from the last two equations, it is clear how to determine the irre-
ducible components of the divisor C: we need to pick an odd index i and
an even index j and set xi = xj = 0 in the other two equations which are
easily rewritten as a single quadratic equation in five variables, so they are
conics. Since each choice of i and j leads to a different conic, we get 9 conics
in total. For example, setting x1 = x2 = 0 we get the following non-singular
conic:

C1 :

{

x3 + x4 + x5 + x6 = 0 ,
x3x6 + x3x5 + x4x6 = 0 .

(6.3)

In view of the order 6 automorphism there are six such conics, which we
denote by Ci, with i = 1, . . . , 6, where Ci is the conic contained in the
subspace xi = xi+1 = 0. The three remaining conics are obtained by setting
xi = xi+3 = 0. For example, setting x3 = x6 = 0 we get the following conic:

L1 :

{

x1 + x2 + x4 + x5 = 0 ,
(x1 + x2)(x4 + x5) = 0 .

The conic is degenerate, consisting of the double line x1+x2 = x4+x5 = 0.
Two other such lines are obtained by using the order 6 automorphism. They
are denoted by Li where Li is the (double) line contained in the subspace
xi+2 = xi−1 = 0.

The singularities of Fc which are contained in C are the points (0 : x1 :
x2 : · · · : x6) where the rank of the following Jacobian matrix is at most 3:
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−c1 1 1 1 1 1 1

0 x3 + x4 + x5 x4 + x5 + x6 x1 + x5 + x6 x1 + x2 + x6 x1 + x2 + x3 x2 + x3 + x4

0 x3x5 0 x1x5 0 x1x3 0

0 0 x4x6 0 x2x6 0 x2x4






.

Consider the following parametrization of L1:

(u : v) 7→ (0 : u : −u : 0 : v : −v : 0) (6.4)

and substitute it in the Jacobian matrix, to see that except for two columns,
all columns are a multiple of the first column, and so the rank is at most 3
(it is in fact 3 at all points where uv 6= 0; the rank drops to 2 at the points
where u = 0 or v = 0). By symmetry, the same holds true for the lines L2

and L3. The suface Fc is therefore singular at all points of the three lines
L1, . . . ,L3. With some extra work it can be shown that Fc has for generic
c no other singularities.

Because of the simple equations for the conics and lines it is easy to
determine how they intersect. It is clear that the lines Li do not intersect.
In order to find out how C1 and L1 intersect, we set x1 = x2 = 0 in the
parametrization (6.4) of L1 to find that u = 0, yieldingQ1 := (04 : 1 : −1 : 0)
as the unique intersection point. Since the tangent line to the conic C1 at this
intersection point has the parametrization (u : v) 7→ (03 : u : −v : v−2u : u)
it is different from L1, so that the point (04 : 1 : −1 : 0) is a simple
intersection point; the latter fact also follows from the fact that the line L1

is not contained in the subspace x1 = x2 = 0 containing the conic C1.

The intersection points between the conics and lines are given in Table 4.
There are 6 intersection points which we denote by Q1, . . . , Q6, where Qi

is the unique intersection point of Ci and Li (or Li−3 when i > 3). The
coordinates of Qi are all zero, except for the (i+ 3)-th and (i+4)-th which
are equal with opposite sign. Notice that each line Li contains two of these
special points, to wit Qi and Qi+3 and that each conic contains three of
them, to wit Qi−1, Qi and Qi+1.

C1 C2 C3 C4 C5 C6

L1 Q1 Q1 Q4 Q4 Q4 Q1

L2 Q2 Q2 Q2 Q5 Q5 Q5

L3 Q6 Q3 Q3 Q3 Q6 Q6

Table 4. Each conic Ci intersects each line Lj transversally
in a single point.
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One determines in a similar way how the conics intersect. For example,
to determine how C1 and C2 intersect one sets x3 = 0 in (6.3) to find two
intersection points, namely Q1 = (0 : 0 : 0 : 0 : 1 : −1 : 0) and Q2 = (0 : 0 :
0 : 0 : 0 : 1 : −1). The intersection points of the curves Ci are indicated in
Table 5. Notice that the curves Ci and Ci+3 are disjoint, and that the conics
intersect (only) at the intersection points Q1, . . . , Q6 of the conics and the
lines. Since every conic Ci contains three of the points Qj and through every
point Qj pass three of the conics Ci, these 6 conics and 6 points form a 63
configuration.

C1 C2 C3 C4 C5 C6

C1 = Q1, Q2 Q2 — Q6 Q1, Q6

C2 Q1, Q2 = Q2, Q3 Q3 — Q1

C3 Q2 Q2, Q3 = Q3, Q4 Q4 —

C4 — Q3 Q3, Q4 = Q4, Q5 Q5

C5 Q6 — Q4 Q4, Q5 = Q5, Q6

C6 Q1, Q6 Q1 — Q5 Q5, Q6 =

Table 5. The non-singular conics Ci are either disjoint, they
intersect transversally in one point or they intersect in two
points.

In order to better visualize the configuration of conics and lines, we rep-
resent them in the following picture, where we draw for the line L1 and for
the conic L1 all lines and conics passing through them. This picture is to
be compared with Figure 3, which represents the Painlevé divisor, which
appears in the compactification of Fc into an Abelian variety. It would
be interesting to obtain the latter compactification — including a complete
description of the divisor added in the process of compactification — by
purely algebraic geometric means, i.e., without using the periodic 6-particle
KM vector field which we have used in a very essential way.
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L1
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L3

C1

C5

C4 C3

C6

C2

C3
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Q2

Q1

Q6

Q4

Figure 4. The intersection pattern of one of the lines and
one of the conics with all other lines and conics.
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