
METAPOST FOR PROBABILITY AND STATISTICS

MetaPost Promotion Pages

by Anthony Phan

25 30 35 40 45 50 55 60 65 70 75 80 85 90
25

30

35

40

45

50

55

60

65

70

75

80

85

90

men
women
x/y linear regression
y/x linear regression
orthogonal linear
regression
convex hull

Men and women life expectancy by country, OMS (WHO) 2001

Men life expectancy

W
o
m

en
li
fe

ex
p

ec
ta

n
cy

Sierra LeoneSierra Leone ZimbabweZimbabwe
BotswanaBotswana

NepalNepal

KuwaitKuwait

IcelandIceland

JapanJapan
MonacoMonaco

Russian FederationRussian Federation

HaitiHaiti

AngolaAngola

Prerequisites

To use the mps suite (mps-core.mp, mps-math.mp, mps-stat.mp), one has to be quite
acquainted with the MetaPost language, that is one has to have read the MetaPost manual
and have used this language to draw pictures. A second requirement is of course knowing
elementary statistics.
This text is just an incomplete draft of a manual of the unstable and incomplete package

mps. Consider this just as examples of MetaPost use.
Syntax, algorithms, and such, are just coming from the way I think about it, and of course

also of what I have experienced with some other computer programs. All of this does not
have a very ambitious aim. Mine is just to draw nice diagrams for some use in pedagogical
notes.

2 Metapost for Probability and Statistics

§ 1. Data input and use

Data input. — This program does not aim to manage large sets of data, or even sets of
large data, there are other programs for that. One of the limitation is the size of the input
stack since data are simply considered as lists read by loops. Another limitation is that one
cannot access to some x[i] when i ≥ 4096.
A data set is a list of numerics or/and strings that can be handled by MetaPost capabilities

(also booleans, pairs, colors, cmykcolors). Defining a data set is just:

data(〈dataname〉) 〈value〉1, 〈value〉2, ...;

which defines a hidden control sequence (_data 〈dataname〉) whose replacement text is just
the list of values.

Data use. — A data set is a set of entries of one, or more, variable. How to use a defined
data set depends on its content. The general syntax is

usedata(〈dataname〉, 〈variable〉1, 〈variable〉2, ...);

where 〈variable〉i is a sequence of characters which defines the name of the corresponding
variable. If 〈variable〉i does not end with $ nor 0, 2, 3, 4 then a column of numeric variables
with name 〈variable〉i[.] will be created destroying any former meaning of 〈variable〉i. If
〈variable〉i does end with $, say 〈variable〉i = 〈variable〉′i$, then a column of string variables
with name 〈variable〉′i[.] will be created destroying any former meaning of 〈variable〉′i. In fact,
all possible type tags are the following:

• 〈variable〉$ declares a string variable;
• 〈variable〉0 declares a boolean variable;
• 〈variable〉1 declares a numeric variable (very optional);
• 〈variable〉2 declares a pair variable;
• 〈variable〉3 declares a color (triple) variable;
• 〈variable〉4 declares a cmykcolor (quadruple) variable.
Then every variable receives a value according to the values’ list in the data set. That also
means that the number of values should be a multiple of the number of variables and that
their types should be coherent to the values’ list.

Moreover, if a variable is named 〈variable〉, then two numerics are set: 〈variable〉.n which
is the number of entries of this variable, and 〈variable〉.sortflag whose value is 0 since no
sorting has been done. A new string named 〈variable〉.type is set to "numeric", "string",
"boolean", "pair", "color", "cmykcolor", according to the type of the 〈variable〉.

Important remark. — In fact, a boolean named declareflag may be set to true in order
to check if any new 〈variable〉 declared in usedata has a former meaning. What will be tested
is if known 〈variable〉 is true or not. If 〈variable〉 is totally unknown, nothing would happen; if
〈variable〉 is a known primary, a warning message should be issued; if 〈variable〉 is the name
of some control sequence with arguments, an error should happen.

If something mysteriously goes wrong within a program, it may be nice to check whether
this can be due or not to the names of some new variables or control sequences. The boolean
declareflag provides a little help for that. Also, even if declareflag = false, errors may
occur rather immediately if 〈variable〉 is the name of some control sequence with arguments.

March 13, 2012 3

Ignoring variables’ entries. — Using a data set, all variables entries are not necessarily
needed, so assigning them should be avoided. For this purpose there is a special reserved
variable’s name which is drop, it means that when a variable name in the variables’ list is
drop then no new variable is created and the corresponding entries are ignored.

Conditional use of data. — The preceding subsection shows how to ignore some columns
in a data set. Ignoring rows in a data set is done with

usedataif 〈condition〉; usedata(〈dataname〉, 〈variable〉1, 〈variable〉2, ...);

The 〈condition〉 must deal with declared variables (in usedata). These variables must appear
in the 〈condition〉 as 〈variable〉i@#. The suffix @# is the index of the current row.
First example. — Here, the data set is a simple list of numerics. The usedata control

sequence uses the dataset “Eggs” and sets x[1] = 688, . . ., x[20] = 557, x.n = 20 and
x.sortflag = 0.

data(Eggs)

688, 388, 544, 645, 264, 322, 503, 847, 540,

382, 404, 203, 422, 307, 784, 402, 556, 419, 690, 557;

beginfig(1);

...

usedata(Eggs, x);

...

endfig;

Second example. — Here, the data set is more complex. The usedata control sequence
uses the dataset “Spiders” and sets:
• sex[1] = "female", . . ., sex[40] = "male", sex.n = 40, sex.sortflag = 0;
• size[1] = 1.49, . . ., size[40] = 0.28, size.n = 40, size.sortflag = 0;
• eggs[1] = 688, . . ., eggs[40] = 0, eggs.n = 40, eggs.sortflag = 0;

data(Spiders)

"female", 1.49, 688, "female", 1.17, 388, "female", 1.29, 544,

"female", 1.36, 645, "female", 1.05, 264, "female", 1.11, 322,

"female", 1.26, 503, "female", 1.59, 847, "female", 1.29, 540,

"female", 1.17, 382, "female", 1.18, 404, "female", 0.88, 203,

"female", 1.20, 422, "female", 1.10, 307, "female", 1.44, 784,

"female", 1.18, 402, "female", 1.30, 556, "female", 1.20, 419,

"female", 1.39, 690, "female", 1.30, 557,

"male", 0.37, 0, "male", 0.40, 0, "male", 0.44, 0, "male", 0.58, 0,

"male", 0.42, 0, "male", 0.37, 0, "male", 0.40, 0, "male", 0.38, 0,

"male", 0.29, 0, "male", 0.47, 0, "male", 0.51, 0, "male", 0.43, 0,

"male", 0.50, 0, "male", 0.37, 0, "male", 0.39, 0, "male", 0.51, 0,

"male", 0.62, 0, "male", 0.48, 0, "male", 0.50, 0, "male", 0.28, 0;

beginfig(1);

...

usedata(Spiders, sex$, size, eggs);

...

endfig;

4 Metapost for Probability and Statistics

If sex doesn’t matter, just type

usedata(Spiders, drop, size, eggs);

if eggs doesn’t matter just type

usedata(Spiders, sex$, size, drop);

if sex and eggs don’t matter just type

usedata(Spiders, drop, size, drop);

Third example. — In the data set “Spiders”, one may want to use only data related to
females in order to study the number of eggs for instance. This can be done as the following:

beginfig(1);

...

usedataif sex@# = "female";

usedata(Spiders, sex$, drop, eggs);

...

endfig;

or in this peculiar case:

beginfig(1);

...

usedataif eggs@# > 0;

usedata(Spiders, drop, drop, eggs);

...

endfig;

Declaring data. — One may want to use data that doesn’t come from a data statement.
For instance when one wants to generate random outcomes:

save x;

numeric x[];

for i = 1 upto 100:

x[i] = uniformdeviate(1);

endfor

Then one has to set x.n to its value: here,

x.n = 100;

It is not necessary to set x.sortflag since an unknown value of it is equivalent to the value 0,
meaning that the corresponding data are not sorted.

A better way is to declare the variable and the number of its entries:

declare(x, 100);

for i = 1 upto x.n:

x[i] = uniformdeviate(1);

endfor

March 13, 2012 5

In this case, if declareflag = true, it is checked if x has a former meaning resulting to a
warning message or an error; then—if no error occurs—, x is saved, defined as a numerical
row, x.n is set to 100, x.sortflag is set to 0, x.type is set to "numeric".
The declare control sequence is similar to usedata: declare(sex$, 100) would make, if

no error occurs, sex saved, defined as a string row, sex.n set to 100, sex.sortflag set to 0,
sex.type set to "string"; declare(point2, 100) would make, if no error occurs, point
saved, defined as a pair row, point.n set to 100, point.sortflag set to 0, point.type set
to "pair", etc.

Sorting data. — There are many reasons for sorting data. It is rather easy to do:

sort x;

The numeric x.sortflag is then set to 1. One can sort many variables’ entries simultaneously:

sort x, y, z;

The sorting procedure will be done on every x.n first entries of the variables x, y and z. Thus,
the numbers of entries of should match. In fact, what is done is the usual lexicographical sort
of the (sub)array specified by the list of variables. In this example, x.sortflag is set to 1,
and y.sortflag and z.sortflag are set to 0.

The sort algorithm used here is the so-called “heap sort” algorithm.

Sort is usually done with the ascending order, but sometimes, it one may prefer to do it in
descending order. The internal numeric sorttype has been introduced for that. When it has
a strictly positive value (say 1), the sort is done with ascending order; otherwise it is done
with descending order.

Weightening data. — It is quite usual that data may be weightened, the weight variable
meaning that some entries are repeated accordingly. For example,

data(poll)

"pros", 26,

"cons", 32,

"no opinion", 17;

usedata(poll, opinion$, n);

Then one has to declare that the variable opinion is weightened by the variable n. It is done
with

weight opinion, n;

Then, the string opinion.w is defined to be "n", and the numeric opinion.tw is set to
n[1] + · · · + n[n.n], that is the total weight for the variable opinion. One should notice
that use of weight as a variable name should be forbidden. In fact the general syntax of the
weight statement is

weight 〈variable〉1, ..., 〈variable〉k, 〈weight-variable〉;
which assigns to every 〈variable〉i the weight 〈weight-variable〉 as described for the variable
opinion in the previous example. The need for weightening variables lies in statistical com-
putations like means, frequency diagrams, . . . The weight variable should be made of positive
numerics, not necessarily integers, which does not have to sum up to one or whatsoever.
The total weight is simply stored in 〈weight-variable〉.tw and also in 〈variable〉.tw just as

6 Metapost for Probability and Statistics

the string 〈variable〉.w is defined to be the 〈weight-variable〉’s name. It is also possible to
unweight a variable or a list of variables with

unweight 〈variable〉1, ..., 〈variable〉k;

What would remain of each variable are just their entries, their number and their sortflag.
(What is done is copying each variable into a temporary one, then copy it back; see the next
subsection.)

Copying variables. — This may be helpful to copy a variable x into a new variable y, for
instance when one wants to make some special computations or reordering without destroying
the former structure of x, or to extract only some entries of the variable x. The general syntax
to do so is

copy(〈known-variable〉1, 〈new-variable〉1,...,〈known-variable〉k, 〈new-variable〉k);

Here variables names go by pairs and there can be one too many such pairs. Copying can
also be conditional

copyif 〈condition〉; copy(〈known-variable〉1, 〈new-variable〉1,...);

The copyif statement has exactly the same meaning as usedataif and also the same syntax.
But there is no need for the 〈condition〉 to involve, only, variables to be copied. The new
variables get the type of the original ones, the sortflag of them if they are known or else
0, and the n (total number of entries) corresponding to the condition. The copy is done pair
by pair. This means that the various known variables need not to have the same number of
entries. For example, try:

usedata(Spiders, sex$, size, eggs);

copyif (sex@# = "female") and (size@# > 1.3);

copy(sixe, x, eggs, y);

sort x, y;

for i = 1 upto x.n: message decimal x & ", " & decimal y; endfor

If the new variables are to be weightened, it is better to copy the weight entries within the
same copy statement, especially if it is a conditional copying; since new variables are not
weightened, it would be necessary to use the weight statement once again. For instance,

data(poll)

"pros", 26,

"cons", 32,

"no opinion", 17;

usedata(poll, opinion$, n);

weight opinion, n;

copyif opinion@# <> "no opinion";

copy(opinion, op, n, opn);

weight op, opn;

March 13, 2012 7

§ 2. More about data management

Reading data from a file. — There are plenty of data file formats. We deal only with the
rawest ones: more or less .dat or .csv-files. A data file is a text file. It is made of lines of
text. Each line contains strings and/or numerics which could be handled by MetaPost.
A single data is defined by what precedes it and what follows. A beginning of line or/and

delimiting character(s) defines the beginning of a new entry. An end of line or/and delimiting
characters defines the end of an entry. The delimiting character is defined by a MetaPost
string named DLM. Its default value is DLM := " ", that is, a normal space. One can set it to
DLM := TAB where TAB is predefined to be the tabulation character. Other cases like DLM :=

"," may appear (comma separated volume or csv). The exact pattern recognition scheme is
the following

〈beginning of the line or DLM 〉〈some spaces〉〈actual entry〉
〈some spaces〉〈end of line or DLM 〉

〈beginning of the line or DLM 〉〈some spaces〉QUOT〈actual entry〉QUOT
〈some spaces〉〈end of line or DLM 〉

Beware, QUOT in the previous line can be almost any single character matching the value of
SQUOT (default value ’) or DQUOT (default value "). Entries beginning or ending with spaces—
or made of spaces, even none—must be surrounded by quotes.
An entry would be recognized as a numeric if it is read as a numeric. Otherwise, it would

be recognized as a string. An entry would be systematically recognized as a string if it is
surrounded by, respectively SQUOT (single quote) or DQUOT (double quot). These are MetaPost
string variables whose default values are respectively single (’) and double quotes ("). They
may be changed, but we don’t think that it would be a good idea.
Also, expressions like 6.62e-34 or 1.51+i0.31 are read as strings.
Missing, or more exactly blank, values are ignored. This means that many delimiting

characters or ends of line would be treated as a single delimiter. So, missing values must be
coded with some keywords in the data file. The keyword used to replace missing numeric and
string entries in data files is defined as the value of the MetaPost string NA. Its default value
is

NA := "NA"

but one can set NA := "." (Sas convention), or NA := "undefined" (Maple convention),
or even NA := "?" (which looks fine).
Some lines maybe treated as comments. This is the case when their very first characters

form a string matching predefined MetaPost string COMMENT. Its default value is "#" and
maybe changed (for example, COMMENT := "%", or COMMENT := "comment", or anything else).
Reading a data file is done with

readdata(〈datafile〉, 〈dataname〉)
where 〈datafile〉 is a string (string variable or explicit name surrounded by double quotes) and
〈dataname〉 the name of the data set where the contents of the data file would be stored as a
simple MetaPost list (see former sections). In such list, what would have been recognized as
numerics would be written as usual MetaPost numerics, and what would have been recognized
as strings would be written as usual MetaPost strings. Missing values NA would be stored as
the MetaPost variable NA and not its current value (this means that the value can be changed
even if the dataset is stored into MetaPost memory).

8 Metapost for Probability and Statistics

One can read a data file from one line to another: it suffices to set MetaPost numerics
firstdataline and lastdataline to the corresponding values before reading the data file.
After the reading, their values would be restored to their default ones:

firstdataline := 0; lastdataline := infinity;

Finally, the data could then be accessed by a usedata(〈dataname〉, ...) invocation.

Example. — The following lines produce exactly the same oms data set and variables.

DLM := " "; COMMENT := "#"; readdata("oms.dat", oms);

usedata(oms, country$, x, y);

DLM := ","; COMMENT := "%"; readdata("oms.csv", oms);

usedata(oms, country$, x, y);

But, beware. In oms.csv entries are separated by and only by "," but it also works with
some ", ". Also commas before ends of lines could have been removed and "%" as a comment
character may be not standard.

Storing variables’ entries into a data set.— One can store the entries of declared variables
into a data set. These variables can be numerics, pairs, or strings. It suffices to type

storedata(〈dataname〉, 〈variable〉1, 〈variable〉2, ...);

If the numbers of entries of the variables differ, or if there are unknown values, the value of
NA would be used to fill the gaps (so these gaps are filled with a predefined string even if
a numeric should be there). If the number of entries 〈variable〉.n of at least one variable is
undefined, storage is aborted. If the storage can be done, a track of the number of variables
involved is kept into some hidden numeric for future use.
The storage can be conditional: just use storedataif (it is the same thing as usedataif

and copyif) before running storedata.

Writing a data set into a file. — To write a data set into a new data file, just type:

writedata(〈dataname〉, 〈datafile〉)
If there is some track of the number of variables involved into the data set (see the previous
subsection), each line of the data file would correspond to one entry of each variable ; if not,
there would be just one entry on each line. Except that, the data file would follow the same
conventions as the ones described in the subsection about reading data from a file: delimiters
DLM and/or ends of lines, strings surrounded by DQUOT, missing values coded as the value
of NA, and finally numerics, pairs, colors, cmykcolors are written with a control sequence
〈type〉tostring (pairtostring for instance default behavior produces things like 6.62e-34
but can be easily be turned to something else).
If one needs to add headers or comments at the beginning of the data file, one can type:

dataheader 〈list of strings〉;
writedata(〈dataname〉, 〈datafile〉);
dataheader;

The first call of dataheader defines the lines of comments at the beginning of the 〈datafile〉,
the last call empties the list (but one can still keep it for further use).

Conditional use of data with NA (don’t trust what follows).—Dealing with missing data is
rather painful. One may use or copy data if and only if the corresponding entries are defined.
In mps-core.mp, one can find the following definition:

March 13, 2012 9

def notNA primary x =

if known x:

if string x:

if x = NA: false else: true fi

else: true fi

else: false fi

enddef;

This provides a simple and–I hope–clear way to use or copy data conditionally. Here is an
example:

copyif (espece@# = "ACRSCI") and (sexe@# = "F") and (notNA longueur@#);

copy(longueur, x);

The database deals with birds. Species and sex data are fully available, but length is not. Of
course, there should be more complex situations where for instance species could be NA. In
this case, I suppose that

copyif if known espece@#: espece@# = "ACRSCI" else: false fi;

In this later example, the variable “espece” has already been defined by some usedata state-
ment. Missing values have been left undefined. The situation would be different if the variable
has to be defined directly from the database.

usedataif if notNA espece@#: espece@# = "ACRSCI" else: false fi;

usedata(oiseaux, NF, espece$,

sexe$, age$, adiposite, adkleins, longueur,

masse, PC, PI, TL$, CS$);

Remark. — This paragraph has to be checked carefully. . . A problem that remains is to
use data only when one of the variables is undefined. But there is no problem to copy data
with a condition on a variable to be undefined. . . Further more, when an entry has to be
rejected, just do x[21] := undefined for instance. Then, if you copy things you just have
to require that notNA x@#.

Little bonus. — We have add a few control sequences into mps-core for reading data files
and converting them into R, Maple, Scilab or Matlab declarations. Here is an example.

input mps-core;

readdata("atlas.dat", donnees);

usedata(donnees, country$, region$, x, y, surf$, nhab$);

stringtofloat(nhab, habitants); stringtofloat(surf, superficie);

export.scilab("atlas.sce", country, region, x, y, superficie, habitants);

end.

In atlas.dat the two last columns provide numbers with scientific notation. Thus they are
read as lists of strings and stored into donnees. We use them as string variables which are con-
verted to pairs by the control sequence stringtofloat. The control sequence export.scilab
just write the imperative declarations of each variables into a new file atlas.sce. In fact the
true control sequence is export.@# and suffixes like scilab, matlab, R and maple are rec-
ognized and undefined values are replaced by some convenient keyword specific to each case.
Other would lead to understandable output anyway.
Line width in the output is controlled by the numeric export line width whose default

value is 60 but can be set to 0 if one wants only one entry per line for instance.

10 Metapost for Probability and Statistics

Classification.—Here we deal with one or many variables with the same number of entries
n. We want to produce some classification, or ranking, without changing any of the previous
variables. Thus a new variable named index will be created to contain the information.

bounds 〈text〉. Control sequence. It defines currentbounds as the text given as argument.
The first item is also stored in _lb and the last in _ub for some practical reasons. So the
text must be an increasing sequence of numerical values.

classification 〈closure〉. Control sequence. Suppose that currentbounds is an increasing
list a0, . . . , ak. With classification 〈right〉, the corresponding classes will be [a0, a1],
]a1, a2], . . .,]ak−1, ak]. With classification 〈left〉, the corresponding classes will be
[a0, a1[, [a1, a2[, . . ., [ak−1, ak]. Default setting is classification 〈left〉.

classify 〈x 〉. Control sequence. From 1 to x.n, it sets index[i] to the middle of the class
to which x[i] belongs, the classes being defined by currentbounds.

numberize 〈x 〉. Control sequence. If there is k different values, than every value of 〈x 〉...
rank 〈x 〉. Control sequence. Provides a rank for every value of 〈x 〉, i.e. a number between 1
and x.n...

kmeans(〈k〉) 〈text〉. Control sequence.

§ 3. Basic computations

means 〈undelimited text〉. Control sequence. It computes the mean of every numeric 〈variable〉
named in 〈undelimited text〉 and stores the result in 〈variable〉.mean. If some variable is not
of numeric type, an error should occur. This computation is not very accurate, it does not
sum up the, eventually weightened, values then divide by the total weight, but performs
successive means computation in order to keep numerical values in the range of MetaPost
capabilities. The three quartiles are computed for a variable in 〈undelimited text〉 if and
only if its entries are sorted (〈variable〉.sortflag = 1) (see the quantile function), and
then stores them in 〈variable〉.q1, 〈variable〉.q2, 〈variable〉.q3. Minimum and maximum
of entries need not to be computed if the entries are sorted since in this case they are
respectively 〈variable〉[1] and 〈variable〉[〈variable〉.n].

quantile 〈delimited pair〉. Control sequence. The function quantile has for arguments a
delimited pair (〈variable〉, α), where α ∈ [0, 1], and returns the quantile of order α of the
sample ditribution of 〈variable〉. It assumes that the entries of 〈variable〉 are sorted and
just gives a warning if 〈variable〉.sortflag is not equal to 1. Computations are done in
the usual way: when α faces a jump of the cumulative function of the discrete distribution
of 〈variable〉, it returns the value of the variable where the jump occurs; when α faces a
proper step of the cumulative function, it returns the middle of the interval over which
this step lies; when α = 0 or 1, it returns respectively the minimum or maximum value of
〈variable〉.

variances 〈undelimited text〉. Control sequence. It computes the (population) variance,
(population) standard deviation, (sample) corrected variance, (sample) corrected stan-
dard deviation, of every, eventually weightened, variable named in 〈undelimited text〉
and stores the results in, respectively, 〈variable〉.var, 〈variable〉.std, 〈variable〉.cvar,
〈variable〉.cstd. If 〈variable〉.mean is unknown then it is computed with the means func-
tion. If some variable is not of numeric type, an error should occur. This computation is
still not very accurate.

March 13, 2012 11

covariances 〈undelimited text〉. Control sequence. It makes sure that every 〈variable〉 in
〈undelimited text〉 has a known variance 〈variable〉.var and then a known mean 〈variable〉.mean;
if not, computations are done according to the former control sequences. Covariances are
computed with the same lack of accuracy as before, they are stored in numeric variables
〈variable〉i.〈variable〉j.cov and 〈variable〉j.〈variable〉i.cov which are equal. There is no
〈variable〉i.〈variable〉i.cov since it should be equal to 〈variable〉i.var. If 〈variable〉i and
〈variable〉j are incompatible (different number of entries or different weightening) their
covariance is set to 0 since there should be no correlation between them.

Remark. — In means or variances variables need not to be weightened the same way, or
to have the same number of entries.

§ 4. Setting up graphics and coordinate system

For all kind of graphics (even piechart), a scale must be given. This is done with

setrange(xmin, xmax, 〈width〉, ymin, ymax, 〈height〉);

then gcoord(x, y), . . .

Predefined pens. — There are three predefined pens which are thin.nib, rule.nib and
thick.nib and which are “pencircles” respectively scaled by the following dimensions:

thin = 0.2 pt, rth = 0.4 pt, thick = 0.6 pt.

One would recognize the dimension rth to be the usual “rule thickness” of TEX—or, more
precisely, of 10 points size Computer Modern fonts. These three pens don’t really appear into
the graphical procedures. In fact, there are two cases: use of the currentpen for drawing
graphs or contours, use of special dimensions for special tasks. These special dimensions are

tickbreadth, gridbreath, hatchbreath and framebreadth.

They are related to pens named tick.nib, grid.nib, hatch.nib and frame.nib. The basic
values of these dimensions are set to be one of the three former dimensions.

Applying changes of dimensions (thin, rth, thick, gradbreath, gridbreath, hatch-
breath and framebreath) to the corresponding pens can be done by executing the
pens setup control sequence. For instance:

thin := 0.18pt; rth := 0.3pt; thick := 0.5pt;

gradbreath := gridbreadth := hatchbreath := thin; framebreath:= thick;

pens_setup;

§ 5. Graphical control sequences and parameters

gcoord 〈pair of relative coordinates〉. Control sequence. It returns the absolute coordinates
corresponding to the relative coordinates taking also care of offsets. It stands for “planar
coordinates” and may be changed for special tasks.

setscoord(〈expression〉(x, y), 〈expression〉(x, y)). Control sequence. It defines the scoord
control sequence explained thereafter.

12 Metapost for Probability and Statistics

scoord 〈pair of relative coordinates〉. Control sequence. It returns the relative coordinates
defined by the formulas in setscoord. The relative coordinates of special (statistical)
graphics should be defined through this control sequence. Then, it would be very easy to
move or transform such graphics (in progress).

gdraw 〈path in relative coordinates〉. Control sequence. It just draws its argument with re-
spect to current coordinates and offsets and also with pen currentpen, color graphcolor,
options set by gdrawoptions(...) and specific options given after the path. It is used in
most of graphical procedures.

graphcolor. Color parameter. This parameter is systematically used when calling the gdraw
control sequence. It can be changed and at time, and one can often bypass its value with
options like withcolor 〈some color〉.

gdrawoptions(text). Control sequence. It has exactly the same use and role as plain-Meta-
Post drawoptions. One can use it for changing the default appearance of basic diagrams.

gdot 〈pair of relative coordinates〉. Control sequence. It just draws the gdotpath scaled by
dotlabeldiam at the relative coordinates given as argument. Options are gdraw options.
But one can use it as

gdot(x,y) withcolor 〈somecolor〉
in order to superset the default color which is graphcolor.

gdotpath. Path parameter. Can be user defined.

gdotstyle(x, y). Control sequence. The argument x resets the gdotpath: 0 fullcircle, 1
square, 2 diamond, 3 triangleup, 4 triangledown, 5 pentagon, 6 hexagon. The argument y
sets the drawing mode: 0 for drawing contour with defaultcolor graphcolor, 1 for filling
contour with defaultcolor graphcolor, 2 for filling contour with color fillcolor and
drawing contour with defaultcolor graphcolor.

gdotdraw 〈number〉. Control sequence. Default meaning is fill but may be changed to
draw for instance.

title[.〈location〉](〈text〉). Control sequence. It draws the list of pictures (defined through
btex ... etex for instance) and strings given in argument from left to right. Numerical
arguments appearing strictly before the last argument are printed, but a last numerical
argument would be read as an angle (in degrees) for rotating the title. The resulting picture
is placed at one of the eight possible locations: top, urt, rt, lrt, bot, llft, lft, ulft.
This is done with respect to the range given at the beginning and also items that would
overpass this range (annotations, graduations, . . .) in order to label the whole figure. Such
a control sequence should be used at the very end of each figure. It uses the textcolor
parameter, so its output is always single colored.

titleoffset. Numeric parameter. This dimension is one the parameters of title (remem-
ber also textcolor). Its predefined value is 6 pt and its meaning should be obvious.

xticks[.〈location〉](〈relative vertical location〉) 〈list of relative horizontal coordinates〉. It
uses the textcolor parameter so its output is always single colored.

yticks[.〈location〉](〈relative horizontal location〉) 〈list of relative vertical coordinates〉. It
uses the textcolor parameter so its output is always single colored.

tickbreadth. Numeric parameter.

March 13, 2012 13

ticklength. Numeric parameter, its default value is 0.6666labeloffset;

tickoffset. Numeric parameter, its default value is labeloffset− ticklength;

autograd[.〈location〉]. Automatically grades the axis. One can grade only one axis with
autograd.bot or autograd.lft, or both with autograd, autograd.llft, autograd.urt,
. . .

hgrid 〈list of relative vertical coordinates〉. Draws horizontal lines with respect to grid pa-
rameters.

vgrid 〈list of relative horizontal coordinates〉. Draws vertical lines with respect to grid pa-
rameters.

plot(expr 〈formula〉, xmin, xmax, nstep). Control sequence. It draws the graph defined
by the formula andalso stores it into lastpathMetaPost path variable (may be interesting
for intersections, but beware of relative units).

noplot(expr 〈formula〉, xmin, xmax, nstep). Control sequence. It just computes the graph
defined by the formula and stores it into lastpath MetaPost path variable with relative
units.

abline(expr a, b). Control sequence. Draws the line y = a + bx within the range of the
current figure.

normal(expr µ, σ, xmin, xmax, nstep). Control sequence. It plots the density function of
N (µ, σ), the normal distribution with mean µ and standard deviation σ,

x 7−→ exp

(

−1
2

(x− µ

σ

)2
)

× 1√
2π σ

.

One can scale the plot or use some specific color just by adding usual options like yscaled
x.tw or withcolor blue.

§ 6. Graphical procedures and their parameters

barchart suffix x. Control sequence.

barthickness. Numeric parameter. Thickness of bars in barchart diagrams. It must be
given in relative coordinates. When plotting a barchart of a non-numeric variable, the
relative distance between each value is 1, so one has to take care of this fact when setting
barthickness in this case.

cumulativebarchart suffix x. Control sequence.

bounds text t. Control sequence. This control sequence defines the bounds that may be used
later on.

boundsflag. Boolean parameter. This boolean is set to true when invocating the bounds
control sequence. It is reset to false as the so defined bounds are used by some forecoming
control sequence.

currentbounds. Control sequence. This control sequence contains the bounds defined with
the bounds control sequence.

lastbounds. Control sequence. This control sequence contains the last bounds that has been
used and may be helpful for further treatment.

14 Metapost for Probability and Statistics

sturges 〈primary〉 x.
sturges(x) = ceiling

(

1 + 3.322 log(x)
)

.

histogram suffix x. Control sequence.

cumulativehistogram suffix x. Control sequence.

boxplot(suffix x)(expr a, b). Control sequence. Draws a vertical boxplot of variable x
with horizontal bounds (width) defined by a and b. The relevant informations given by
this diagram are: the “minimum”, the first quartile q1/4, the median q1/2, the third quar-
tile q3/4 and the “maximum”. Quartiles are computed with respect to the whole data
contained in x, but the extrema may omit too large values: when the boolean variable
tuckeyflag is set to true, then lowerbound = max(min(x), q1/4 − 1.5(q3/4 − q1/4)) and
upperbound = min(max(x), q3/4+1.5(q3/4− q1/4)), else lowerbound = max(min(x), q0.01)
and upperbound = min(max(x), q0.99). Values outside of this range are always plotted and
their numeric values are given when the boolean gmarkflag2 is true. The average x.mean is
plotted, and its numerical value is given when gmarkflag1 is true. The following numerical
quantities are defined

x.mean, x.q1, x.q2, x.q3, x.lmoustache, x.umoustache

(only if they are not already defined, think of conditional plot). There is also the boxplot-
spread numerical parameter. When it is set to a strictly positive value, then horizontal
lines are drawn at the boundaries of the diagram spreading over [a, b] by an amount given
by this parameter (it is ugly be quite usual, man makes the diagram clearer).

tuckeyflag. Boolean parameter. See boxplot.

piechart(suffix x)(expr 〈center〉, 〈x radius〉, 〈y radius〉, 〈angle〉). Control sequence.
piefactor. Numeric parameter. The radius of every slice is equal to the radius given as
parameter of piechart times (1 − piefactor). Every slice is flushed to the limits of the
circle with radius given as parameter.

gmarkflag[], gmarkloc[], gmarkangle[].

frequencymode. Internal numeric parameter. 0 for probability or proportion, 1 for frequency,
2 for percent.

§ 7. Graphical options and their parameters

options 〈undelimited text〉.
fillcolor. Color parameter.

fillcolors 〈list of colors〉. Control sequence. It defines a list of colors that may be used
of multicolored diagrams. If the list of colors is non-void, the color parameter fillcolor
is set to be equal to the first color of the list (fillcolor[0]), otherwise fillcolor[0]
is set to be equal to fillcolor; these colors are stored into a color row fillcolor[].
Starting a multicolored diagram, fillcolor[0] should always be reset to the current
value of fillcolor. For manual use of the so defined color list, just set

fillcolor := fillcolor[i].

See also the gradient control sequence.

March 13, 2012 15

hatchbreadth. Numeric parameter.

hatchstep. Numeric parameter.

alphafill. Predefined graphical option. In order to compare, say, two histograms, it is nice
to put them one on the other. If their stripes are not filled, it’s ok, if they are hatched,
it’s also ok. But when they are filled with plain solid colors, some stripes may mask some
others totally. That’s why we introduce some transparency (and also because it is funny).
It suffices to type

options alphafill;

then automatic filling will be done using the alphafill control sequence whose syntax is
strictly alphafill 〈cycle path〉, i.e., it admits no options and one has to change manually
fillcolor to change the color of the filling.

fgalpha. Numeric parameter. The parameter fgalpha is a number lying between 0 and 1.
The closer fgalpha is to 0, the more transparent fillings are; the closer alpha is to 1, the
more opaque fillings are.

bgalpha. Numeric parameter. The parameter bgalpha is a number lying between 0 and 1.
It’s role is to take the background color into account or not when performing alphafill.
The closer bgalpha is to 0, the more background color dominates; the closer bgalpha is
to 1, the less it dominates. We believe that one should have

0 < fgalpha ≤ bgalpha ≤ 1,
and that it’s better to have bgalpha = 1 since there is no real reason for taking the
background color into account here.

autoframe. Predefined graphical option.

noframe. Predefined graphical option.

frameflag. Boolean parameter.

gridoptions(text).

autogrid. Predefined graphical option.

autovgrid. Predefined graphical option.

autohgrid. Predefined graphical option.

nogrid. Predefined graphical option.

hgridflag. Boolean. Tells if an horizontal grid should be drawn once the figure achieved. It
is set to true when using the option autohgrid or autogrid.

vgridflag. Boolean. Tells if an vertical grid should be drawn once the figure achieved. It is
set to true when using the option autovgrid or autogrid.

gridcolor. Color. Color of the grids.

gridbreadth. Numeric. Thickness of the pen used to draw horizontal and vertical grids.

hgridstep. Numeric. Recommanded horizontal spacing between the vertical lines of the
optional horizontal grid.

vgridstep. Numeric. Recommanded vertical spacing between the horizontal lines of the
optional vertical grid.

16 Metapost for Probability and Statistics

gridstep. Macro. gridstep := 5mm is equivalent to hgridstep := vgridstep := 5mm.

opacity. Predefined graphical option.

noopacity. Predefined graphical option.

opacityflag. Boolean parameter.

§ 8. Samples

200 400 600 800
0

0.01

0.02

0.03

0.04

0.05

0.06

�ufs

test-mps.1

�ufs200 800
0

0.25

0.5

0.75

1

q1/4 me q3/4

test-mps.2

0.2 0.35 0.5 0.65 0.8 0.95 1.1 1.25 1.4 1.55 1.7 cm

test-mps.3

0.1 0.2 0.35 0.5 0.65 0.8 0.95 1.1 1.25 1.4 1.55 1.7 1.8
0

0.25

0.5

0.75

1

cm

test-mps.4

0.2 0.3 0.4 0.5 0.6 0.7 cm

test-mps.5

0.125 0.2 0.3 0.4 0.5 0.6 0.7 0.775
0

0.25

0.5

0.75

1

cm

test-mps.6

March 13, 2012 17

0.85 1.05 1.2 1.3 1.45 1.65 cm

test-mps.7

0

0.25

0.5

0.75

1

0.7 0.85 1.05 1.2 1.3 1.45 1.65 1.8cm

test-mps.8

0.28
0.425

0.75

1.23

1.59

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
cm

test-mps.9

0.28

0.375
0.425

0.5

0.62

0.3

0.4

0.5

0.6

0.7 cm

test-mps.10

0.93

1.17
1.23

1.33

1.57

1

1.2

1.4

1.6

cm

test-mps.11

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
cm

test-mps.12

�/2�/2

�z� z�0

test-mps.13

�/2�/2

�t� t�0

test-mps.14

18 Metapost for Probability and Statistics

200 300 400 500 600 700 800 900 �ufs

test-mps.15

150 200 300 400 500 600 700 800 900 950

0.25

0.5

0.75

1

�ufs

test-mps.16

200

300

400

500

600

700

800

900

203

385
462.5

601

847

�ufs

test-mps.17

0
.12

5
0

0.2

3500.
2

45
0

0.25

550

0.15

650 0.
05

75
0 0
.0

5

8
5
0

test-mps.18

0.5 1 1.5 2 2.5 3 3.5 4
1

2

3

4

5

6

7

8

9

cm3

�100 �ufs

test-mps.19

March 13, 2012 19

Mean �x = 0.005
Corrected standard
deviation sx = 1.005

N (�x, sx) d.f.
N (0, 1) d.f.

5 4 3 2 1 0 1 2 3

4094 outcomes produced by normaldeviate

test-mps.20

25 30 35 40 45 50 55 60 65 70 75 80 85 90

Men life expectancy by country, OMS (WHO) 2001

test-mps.21

25 30 35 40 45 50 55 60 65 70 75 80 85 90

Women life expectancy by country, OMS (WHO) 2001

test-mps.22

20 Metapost for Probability and Statistics

Sierra LeoneZimbabwe

Botswana

Namibia

NigeriaMauritaniaBeninGuinea
Haiti

Angola

Vanuatu

Bahrain

Venezuela, Bolivarian Republic of
SlovakiaLithuania

Russian Federation

Uzbekistan

Congo

Nepal

Bangladesh

Maldives

MongoliaKyrgyzstan
Kazakhstan

Cambodia

Brunei DarussalamKuwait

Iceland

Japan
Monaco

Uruguay
PolandArgentina

Dominica

30 40 50 60 70 80 90
30

40

50

60

70

80

90
Use of kmeans and convexhull with k = 4

Men life expactancy

W
o
m

en
li
fe

ex
p
a
ct

a
n
cy

test-mps.23

March 13, 2012 21

30 40 50 60 70 80 90
30

40

50

60

70

80

90
Use of kmeans and ellipsoid with k = 4

Men life expactancy

W
o
m

en
li
fe

ex
p
a
ct

a
n
cy

test-mps.24

MPS-MATH.MP

MetaPost Promotion Pages

Anthony Phan

Introduction

The file mps-math.mp is a MetaPost library of rather common real valued mathematical
functions of one real variable. It has been designed as part of the mps suite and, thus, it is
quite oriented to probabilistic computations.
Since MetaPost numerical computations are rather unaccurate and limited—let us recall

that it is based on a fixed point arithmetic with a precision at most equal to 1/65536 and
that assignable values cannot excess 4096 − 1/65536 in absolute value—, one cannot really
expect to have a “scientific” calculator based on MetaPost.
Nevertheless, MetaPost capacities appear to be large enough for academic purpose: draw-

ing graphs, making rather simple computations. Providing mps-math.mp as a standalone
MetaPost input file may have two interests: saving time of MetaPost users and enabling some
enhancements of mps-math.mp.

§ 1. Numerical computations

solve(expr 〈formula〉, 〈lowerbound〉, 〈upperbound〉). This control sequence searches for
zeros of x 7→ f(x) with x ∈ [〈lowerbound〉, 〈upperbound〉] by the bisection or dichotomy
method. The 〈formula〉 is a string defining an expression whose only variable or unknown
value is x (for instance zero = solve("(x**2)-1", -2, 2)). It stops when accuracy is
reached and then returns a number.

solve.secant(expr 〈formula〉, 〈lowerbound〉, 〈upperbound〉). This is the same control se-
quence as before except that the suffix secant forces to use the secant method for finding
a zero. It stops when accuracy is reached and then returns a number.

integrate(expr 〈formula〉, 〈lowerbound〉, 〈upperbound〉). The meaning of this control se-
quence is obvious, its syntax is the same as before. It stops when accuracy is reached and
then returns a number.

§ 2. Usual mathematical functions

The most usual mathematical functions are implemented into mps-math.mp and described
thereafter. The syntax is the most common one. The descriptions show domains and ranges,
usual/standard notations, and also the meaning of each function. Arguments too close to the
bounds of the domains may lead to errors related to MetaPost capabilities; arguments outside
of the domains may give error or unproper results.

PI (or pi). Internal numeric whose value is 3.141592654 ≈ π.

STPI. Internal numeric whose value is 2.506628275 ≈
√
2π.

March 13, 2012 23

exp 〈primary〉 x. Usual exponential function

R −→ R
∗
+, x 7−→ exp(x) = ex =

∞
∑

n=0

xn

n!
.

ln 〈primary〉 x. Usual (natural or Neperian) logarithm function
R
∗
+ −→ R, x 7−→ ln(x) = Log(x) = exp−1(x).

log 〈primary〉 x. Decimal logarithm function
R
∗
+ −→ R, x 7−→ log(x) = Log10(x).

cosh 〈primary〉 x. Hyperbolic cosine function

R −→ [1,+∞[, x 7−→ cosh(x) = ch(x) =
ex + e−x

2
=

∞
∑

n=0

x2n

(2n)!
.

sinh 〈primary〉 x. Hyperbolic sine function

R −→ R, x 7−→ sinh(x) = sh(x) =
ex − e−x
2

=
∞
∑

n=0

x2n+1

(2n+ 1)!
.

tanh 〈primary〉 x. Hyperbolic tangent function

R −→]−1, 1[, x 7−→ tanh(x) = th(x) =
ex − e−x
ex + e−x

.

coth 〈primary〉 x. Hyperbolic cotangent function

R −→]−∞,−1[∪]1,+∞[, x 7−→ coth(x) =
ex + e−x

ex − e−x .

arccosh 〈primary〉 x. Inverse hyperbolic cosine function

[1,+∞[−→ R+, x 7−→ arc cosh(x) = arg ch(x) = ln
(

x+
√

x2 − 1
)

.

arcsinh 〈primary〉 x. Inverse hyperbolic sine function

R −→ R, x 7−→ arc sinh(x) = arg sh(x) = ln
(

x+
√

x2 + 1
)

.

arctanh 〈primary〉 x. Inverse hyperbolic tangent function

]−1, 1[−→ R, x 7−→ arc tanh(x) = arg th(x) =
1

2

(

ln
(1 + x

1− x

)

)

.

arccoth 〈primary〉 x. Inverse hyperbolic cotangent function
]−∞,−1[∪]1,+∞[−→ R

∗, x 7−→ arc coth(x) = arg coth(x) = arc tanh(1/x).

cos 〈primary〉 x. Circular cosine function

R −→ [−1, 1], x 7−→ cos(x) =
eix + e−ix

2
=

∞
∑

n=0

(−1)n x2n

(2n)!
.

sin 〈primary〉 x. Circular sine function

R −→ [−1, 1], x 7−→ sin(x) =
eix − e−ix

2i
=

∞
∑

n=0

(−1)n x2n+1

(2n+ 1)!
.

24 mps-math.mp

tan 〈primary〉 x. Circular tangent function

R \ (π/2 + πZ) −→ R, x 7−→ tan(x) = tg(x) =
sin(x)

cos(x)
.

cot 〈primary〉 x. Circular cotangent function

R \ πZ −→ R, x 7−→ cot(x) = cotg(x) =
cos(x)

sin(x)
.

arccos 〈primary〉 x. Inverse circular cosine function
[−1, 1] −→ [0, π], x 7−→ arc cos(x) = cos−1(x).

arcsin 〈primary〉 x. Inverse circular sine function
[−1, 1] −→ [−π/2, π/2], x 7−→ arc sin(x) = sin−1(x).

arctan 〈primary〉 x. Inverse circular tangent function

R −→]−π/2, π/2[, x 7−→ arc tan(x) = arc tg(x) = arc sin

(

x√
x2 + 1

)

.

arccot 〈primary〉 x. Inverse circular cotangent function

R −→]0, π[, x 7−→ arc cot(x) = arc cotg(x) = arc cos

(

x√
x2 + 1

)

.

Other usual functions are already implemented into (plain-)MetaPost: abs, floor, ceiling,
round, sqrt, takepower of, . . .

§ 3. Continuous Probability distributions

lnGamma(expr x). Logarithm of the Eulerian Gamma function, ln(Γ(x)).

Gamma(expr x). Eulerian Gamma function

R
∗
+ −→ [

√
π,+∞[, x 7−→ Γ(x) =

∫ +∞

0

tx−1 e−t dt.

Remember that for n ∈ N, n! = Γ(n+ 1).

Beta(expr x, y). Eulerian Beta function

(R∗+)
2 −→ R

∗
+, x 7−→ B(x, y) =

∫ 1

0

ux−1(1− u)y−1 du =
Γ(x)× Γ(y)
Γ(x+ y)

.

gammapdf(expr x, a, λ). Probability density function of the Gamma distribution with pa-
rameters a > 0, λ > 0.

R −→ R+, x 7−→ 1R+
(x)

λa

Γ(a)
xa−1 e−λx.

gammacdf(expr x, a, λ). Cumulative distribution function of the Gamma distribution with
parameter a > 0, λ > 0.

R −→ [0, 1[, x 7−→ 1R+
(x)

λa

Γ(a)

∫ x

0

ta−1 e−λt dt.

March 13, 2012 25

gammaicdf(expr p, a, λ). Inverse cumulative distribution function of the Gamma distri-
bution with parameter a > 0, λ > 0.

[0, 1[−→ R+, p 7−→ gammaicdf(p, a, λ).

It is set to 0 for p < accuracy and to infinity for p > 1− accuracy.

normlimit. Numerical parameter for normal computations: if X is a random variable with
law N (0, 1), the normal distribution with mean 0 and standard deviation 1, then P{X ≥
normlimit} = P{X ≤ −normlimit} ≈ 0. Its value is (reasonably) set to normlimit = 4.

normalpdf(expr x). Probability density function of N (0, 1).

R −→ R+, x 7−→ e−x
2/2/

√
2π.

normalcdf 〈primary〉 x. Cumulative distribution function of N (0, 1) computed with the
so-called Hastings best approximation method. To be experimented and improved. It is
is supposed to replace the following implementation which is rather heavy. One can set
def normalcdf = normalcdf enddef; for instance for computation of cdf or icdf with
respect to a method or another.

normalcdf 〈primary〉 x. Cumulative distribution function of N (0, 1).

R −→]0, 1[, x 7−→ Φ(x) =

∫ x

−∞

e−z
2/2 dz√

2π
=
1

2
+

1√
2π

∞
∑

n=0

(−1)n x2n+1
(2n+ 1)× n!

.

It is computed with its associated power series when |x| < normlimit, and set to 0 or 1
otherwise.

normalcdf 〈primary〉 x. Cumulative distribution function of N (0, 1). It is just another
implementation of the previous function with a Gamma cumulative distribution function
since

Φ(x) =
1

2

(

sgn(x)× gammacdf(x2/2, 1/2) + 1, 1
)

, for all x ∈ R.

normalicdf 〈primary〉 p. Inverse cumulative distribution function of N (0, 1).
]0, 1[−→ R, p 7−→ normalicdf(p) = Φ−1(p).

It is set to ±infinity for p outside of]accuracy, 1− accuracy[.

Remark. — Normal distributions with mean m and standard deviation σ are not inple-
mented sine they an be easily derived from the standard normal distribution. For instance,
one can set

vardef gaussianpdf(expr x, m, sigma) = normalpdf((x-m)/sigma)/sigma enddef;

vardef gaussiancdf(expr x, m, sigma) = normalcdf((x-m)/sigma) enddef;

vardef gaussianicdf(expr p, m, sigma) = sigma*normalicdf(p)+m enddef;

in order to get the probability, cumulative, inverse cumulative distribution functions of the
N (m,σ2) distribution with m ∈ R and σ > 0.

chisquarepdf(expr x, ν). Probability density function of χ2(ν), the chi-square (Pearson)
distribution with ν > 0 degrees of freedom.

R −→ R+, x 7−→ 1R+
(x)

xν/2−1e−x/2

2ν/2 Γ(ν/2)
.

26 mps-math.mp

chisquarecdf(expr x, ν). Cumulative distribution function of χ2(ν).

R −→ R+, x 7−→ 1R+
(x)

∫ x

0

tν/2−1e−t/2
dt

2ν/2 Γ(ν/2)
.

chisquareicdf(expr p, ν). Inverse cumulative distribution function of χ2(ν).

[0, 1[−→ R+, p 7−→ chisquareicdf(p, ν).

It is set to 0 for p < accuracy and to infinity for p > 1− accuracy.

betapdf(expr x, a, b). Probability density function of the Beta distribution with param-
eters a > 0 and b > 0.

R −→ R+, x 7−→ 1[0,1](x)x
a−1(1− x)b−1/B(a, b).

betacdf(expr x, a, b). Cumulative distribution function of the Beta distribution with pa-
rameters a > 0 and b > 0.

R −→ R+, x 7−→
∫ x

0

1[0,1](u)u
a−1(1− u)b−1

du

B(a, b)
.

betaicdf(expr p, a, b). Inverse cumulative distribution function of the Beta distribution
with parameters a > 0 and b > 0.

[0, 1] −→ R+, p 7−→ betaicdf(p, a, b).

It is set to 0 for p < accuracy and to 1 for p > 1− accuracy.

studentpdf(expr x, ν). Probability density function of T (ν), the Student distribution
with ν > 0 degrees of freedom.

R −→ R+, x 7−→ 1√
ν B(ν/2, 1/2)

(

1 +
x2

ν

)−(ν+1)/2

.

studentcdf(expr x, ν). Cumulative distribution function of T (ν).

R −→ R+, x 7−→
∫ x

−∞

(

1 +
z2

ν

)−(ν+1)/2
dz√

ν B(ν/2, 1/2)
.

studenticdf(expr p, ν). Inverse cumulative distribution function of T (ν).
]0, 1[−→ R, p 7−→ studenticdf(p, ν).

It is set to ±infinity for p outside of]accuracy, 1− accuracy[.

fisherpdf(expr x, ν1, ν2). Probability density function of F(ν1, ν2), the Fisher distribu-
tion with ν1 > 0 and ν2 > 0 degrees of freedom (ν1 is the numerator degree of freedom,
ν2 the demominator degree of freedom).

R −→ R+, x 7−→ 1R+
(x)

(ν1/ν2)
ν1/2 xν1/2−1

B(ν1/2, ν2/2)(1 + x× ν1/ν2)(ν1+ν2)/2
.

fishercdf(expr x, ν1, ν2). Cumulative distribution function of F(ν1, ν2).

R −→ R+, x 7−→ 1R+
(x)

∫ x

0

(ν1/ν2)
ν1/2 zν1/2−1

B(ν1/2, ν2/2)(1 + z × ν1/ν2)(ν1+ν2)/2
dz.

fishericdf(expr p, ν1, ν2). Inverse cumulative distribution function of F(ν1, ν2).
[0, 1[−→ R+, p 7−→ fishericdf(p, ν1, ν2).

It is set to 0 for p < accuracy and to infinity for p > 1− accuracy.

March 13, 2012 27

§ 4. Discrete Probability distributions

About quantiles, please note that qp = k + 0.5 when F (k) = p for k ∈ N.

poissonpdf(expr x, λ). Probability distribution function of P(λ), the Poisson distribution
with parameter λ ≥ 0.

R −→ [0, 1], x 7−→
{

e−λ λx/x! if x ∈ N,
0 otherwise.

poissoncdf(expr x, λ). Cumulative distribution function of P(λ).
poissonicdf(expr p, λ). Inverse cumulative distribution function of P(λ).
binomialpdf(expr x, n, π). Probability distribution function of B(n, π), the binomial dis-
tribution with parameters n ∈ N

∗ and π ∈ [0, 1].

R −→ [0, 1], x 7−→
{

Cx
n π

x(1− π)n−x if x ∈ {0, 1, . . . , n},
0 otherwise.

binomialcdf(expr x, n, π). Cumulative distribution function of B(n, π).
binomialicdf(expr p, n, π). Inverse cumulative distribution function of B(n, π).
geometricpdf(expr x, π). Probability distribution function of G(π), the geometrical dis-
tribution with parameter π ∈ [0, 1]. Describe the law of the first success rank in an infinitely
repeated Bernoulli trial with parameter π ∈ [0, 1]. Thus, it is given by

R −→ [0, 1], x 7−→
{

π(1− π)x−1 if x ∈ {1, 2, 3, . . .},
0 otherwise.

geometriccdf(expr x, π). Cumulative distribution function of G(π). It returns the sum
up to x of the previous probabilities. Thus it is given by

R −→ [0, 1], x 7−→
{

1− (1− π)floor x if x ≥ 1,
0 otherwise.

geometricicdf(expr p, π). Inverse cumulative distribution function of G(π).
[0, 1] −→ {1, 1.5, 2, 2.5, 3, 3.5, . . .}, p 7−→ geometricicdf(p, π).

negativebinomialpdf(expr x, n, π). Probability distribution function of the negative bi-
nomial ditribution with parameters n ∈ N

∗ and π ∈ [0, 1]. Describe the law of the n-th
success rank, n ∈ N

∗, in an infinitely repeated Bernoulli trial with parameter π ∈ [0, 1].
Thus, it is given by

R −→ [0, 1], x 7−→
{

Cn−1
x−1 π

n(1− π)x−n if x ∈ {n, n+ 1, n+ 2, . . .},
0 otherwise.

One can remark that the negative binomial distributions for n = 1 are just the correspond-
ing geometric ones. It is certainly better when n = 1 to use functions related to geometric
distributions instead of negative binomial distributions related ones.

negativebinomialcdf(expr x, n, π). Cumulative distribution function of the negative
binomial ditribution with parameters n ∈ N

∗ and π ∈ [0, 1]. One can easily prove that it
is given by

R −→ [0, 1], x 7−→ 1− binomialcdf(n− 1,floorx, π).

28 mps-math.mp

negativebinomialicdf(expr p, n, π). Inverse cumulative distribution function of the
negative binomial ditribution with parameters n ∈ N

∗ and π ∈ [0, 1].
[0, 1] −→ {n, n+ 0.5, n+ 1, n+ 1.5, . . .}, p 7−→ negativebinomialicdf(p, n, π).

hypergeometricpdf(expr x, N, n, π). Probability distribution function of H(N,n, π),
the hypergeometrical distribution with parameters N ≥ n ∈ N

∗ and π ∈ [0, 1]. One
should have Nπ ∈ N.

R −→ [0, 1],

x 7−→







Cx
Nπ C

n−x
N(1−π)

Cn
N

if x ∈ {max(0, n−N(1− π)), . . . ,min(n,Nπ)},
0 otherwise.

hypergeometriccdf(expr x, N, n, π). Cumulative distribution function of H(N,n, π).
hypergeometricicdf(expr p, N, n, π). Inverse cumulative distribution function of
H(N,n, π).

§ 5. Rather specific Probability distributions

kolmogorovcdf(expr x, n). Cumulative distribution function of Kolmogorov distributions.
These are the famous probability distributions involved in Kolmogorov–Smirnov (two-
sided) Goodness of Fit tests with statistic

Kn = ‖F − Fn‖∞ = sup
x∈R

∣

∣F (x)−Fn(x)
∣

∣ = maxni=1
(

F (X(i))− (i− 1)/n
)

∨
(

i/n−F (X(i))
)

.

Their computation is based on “Evaluating Kolmogorov’s Distribution” by George Marsa-
glia and Wai Wan Tsang. Accuracy is of course not as good in MetaPost as it can be in
C.

Remark. — Computations are done with some home made float format. Floats are repre-
sented as MetaPost pairs (x, y), x is the mantissa, y is the exponent, the basis is fbasis = 64.
If x 6= 0, then 1 ≤ |x| < fbasis where fbasis = 64, thus, in binary terms, x is coded
with 6 digits point 16 digits. The exponent is computed in epsilon units, so its range is
{−228 − 1, . . . , 228 − 1}. This roughly allows to code non zero numbers with absolute value
between 64−2

28−1 = 2−3×(2
30−4) and 642

28

= 23×2
30

. The choice of fbasis = 64 is of course
because 64 × 64 = 4096 the fixed upper limit of MetaPost fixed point computations (think
of products). This is also fine because the lower limit is 2−16. Numerical overflows should
not happen with some normal use. What can happen are memory overflows due to Marsaglia
& Al. method.

kolmogorovicdf(expr p, n). Inverse cumulative distribution function of Kolmogorov dis-
tributions. (Please do not use it since it is based on the bisection method or dichotomy.)

klmcdf(expr x, n). Cumulative distribution function of the limiting distributions associ-
ated to Kolmogorov distribution by Dudley’s asymptotic formula (1964):

lim
n→∞

P
{

Kn ≤ u/
√
n
}

= 1 + 2

∞
∑

k=1

(−1)k exp
(

−2k2u2
)

,

with some numerical adjustments (Stephens M.A., 1970), and other ones for small values
and large ones.

March 13, 2012 29

klmicdf(expr p, n). Inverse cumulative distribution function of the previous distributions.

kpmcdf(expr x, n). Cumulative distribution function of the distribution involved in the
one sided Goodness of Fit tests with statistic

K+
n = sup

x∈R

(

F (x)− Fn(x)
)

= max1≤i≤n

(i

n
− F

(

X(i)

)

)

or

K−n = sup
x∈R

(

Fn(x)− F (x)
)

= max1≤i≤n

(

F
(

X(i)

)

− i− 1
n

)

which share the same distribution: for x ∈ [0, 1],

kpmcdf(x, n) = P
{

K±n ≤ x
}

= x
∑

0≤k≤nx

(

n

k

)

(k/n− x)k(x+ 1− k/n)n−k−1

= 1− x
∑

nx<k≤n

(

n

k

)

(k/n− x)k(x+ 1− k/n)n−k−1,

the second formula being the one used for computations.

kpmicdf(expr p, n). Inverse cumulative distribution function of the previous distributions.

exponentialcdf(expr x, λ). And also pdf and icdf.

cauchycdf(expr x, a). And also pdf and icdf.

paretocdf(expr x, xmin, k). And also pdf and icdf.

GPacdf(expr x, µ, σ, ξ). And also pdf and icdf.

gumbelcdf(expr x, µ, σ, ξ). And also pdf and icdf.

frechetcdf(expr x, µ, σ, α). And also pdf and icdf.

weibulcdf(expr x, µ, σ, α). And also pdf and icdf.

GEVcdf(expr x, µ, σ, ξ). And also pdf and icdf.

choose(expr n, k). It simply gives Ck
n =

(

n
k

)

= n!/(k! (n − k)!) the usual binomial coeffi-
cients computed by rounding the righthand expression in the following identity:

Ck
n =

(

n

k

)

=
n!

k! (n− k)!
=
n

1
× n− 1

2
× · · · × n− k + 1

k
.

30 mps-math.mp

§ 6. Graphical tests

0 1 2 3 4 5 6 7 8 9 10
0.0250.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
0.950.975

poisson distribution with parameter 2

test-math.1

0 1 2 3 4 5 6 7 8 9 10
0.0250.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
0.950.975

binomial distribution with parameters (10,0.2)

test-math.2

0 2 4 6 8 10 12 14 16 18 20
0.0250.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
0.950.975

geometric distribution with parameter 0.2

test-math.3

March 13, 2012 31

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0.0250.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
0.950.975

negativebinomial distribution with parameters (2,0.2)

test-math.4

0 1 2 3 4 5 6 7 8 9 10
0.0250.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
0.950.975

hypergeometric distribution with parameters (100,10,0.2)

test-math.5

4 3.2 2.4 1.6 0.8 0 0.8 1.6 2.4 3.2 4
0.0250.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
0.950.975

gaussian distribution with parameters (0,1)

test-math.6

32 mps-math.mp

0 2 4 6 8 10 12 14 16 18 20
0.0250.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
0.950.975

chisquare distribution with parameter 6

test-math.7

4 3.2 2.4 1.6 0.8 0 0.8 1.6 2.4 3.2 4
0.0250.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
0.950.975

student distribution with parameter 5

test-math.8

0 2 4 6 8 10 12 14 16 18 20
0.0250.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
0.950.975

fisher distribution with parameters (10,5)

test-math.9

March 13, 2012 33

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.0250.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
0.950.975

kolmogorov distribution with parameter 5

test-math.10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.0250.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
0.950.975

klm distribution with parameter 5

test-math.11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.0250.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
0.950.975

kpm distribution with parameter 5

test-math.12

34 mps-math.mp

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.0250.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
0.950.975

exponential distribution with parameter 1

test-math.13

15 12 9 6 3 0 3 6 9 12 15
0.0250.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
0.950.975

cauchy distribution with parameter 1

test-math.14

1 1.9 2.8 3.7 4.6 5.5 6.4 7.3 8.2 9.1 10
0.0250.050.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.90.950.975

pareto distribution with parameters (1,2)

test-math.15

March 13, 2012 35

0 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8
0.0250.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
0.950.975

frechet distribution with parameters (0,1,2)

test-math.16

2 1 0 1 2 3 4 5 6 7 8
0.0250.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
0.950.975

GPa distribution with parameters (0,1,0.25)

test-math.17

2 1 0 1 2 3 4 5 6 7 8
0.0250.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
0.950.975

gumbel distribution with parameters (0,1)

test-math.18

36 mps-math.mp

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.0250.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
0.950.975

weibull distribution with parameters (0,1,2)

test-math.19

2 0.6 0.8 2.2 3.6 5 6.4 7.8 9.2 10.6 12
0.0250.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
0.950.975

GEV distribution with parameters (0,1,0.5)

test-math.20

MPS-RAND.MP

MetaPost Promotion Pages

Anthony Phan

uniformdeviate expr x. Metafont/Post primitive.

Uniform deviates (over [0, 1])

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

theorical distribution
sample distribution

statistic ks = 0.079
p-value = 0.541

test-rand.1

normaldeviate. Metafont/Post primitive.

Normal deviates (N (0, 1))

3 2 1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

theorical distribution
sample distribution

statistic ks = 0.086
p-value = 0.433

test-rand.2

38 mps-rand.mp

Normaldeviate. Box–Muller, or polar, method.

Normal deviates (Box–Muller)

3 2.5 2 1.5 1 0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

theorical distribution
sample distribution

statistic ks = 0.083
p-value = 0.484

test-rand.3

random.

Random deviates

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

theorical distribution
sample distribution

statistic ks = 0.098
p-value = 0.274

test-rand.4

exponentialdeviate expr λ.

Exponential deviates (� = 1)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

theorical distribution
sample distribution

statistic ks = 0.088
p-value = 0.407

test-rand.5

March 13, 2012 39

cauchydeviate expr a.

Cauchy deviates (a = 1)

1000 500 0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

theorical distribution
sample distribution

statistic ks = 0.089
p-value = 0.384

test-rand.6

gammadeviate(expr a, λ).

Gamma deviates (a = 3.75, � = 1)

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

theorical distribution
sample distribution

statistic ks = 0.085
p-value = 0.449

test-rand.7

chisquaredeviate expr df.

Chi-square deviates (df = 10)

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

theorical distribution
sample distribution

statistic ks = 0.075
p-value = 0.615

test-rand.8

40 mps-rand.mp

betadeviate(expr a, b).

Beta deviates (a = 2, b = 3)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

theorical distribution
sample distribution

statistic ks = 0.072
p-value = 0.654

test-rand.9

Beta deviates (a = 0.5, b = 0.5)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

theorical distribution
sample distribution

statistic ks = 0.06
p-value = 0.857

test-rand.10

studentdeviate expr df.

Student deviates (df = 10)

3 2 1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

theorical distribution
sample distribution

statistic ks = 0.123
p-value = 0.088

test-rand.11

March 13, 2012 41

fisherdeviate(expr ndf, ddf).

Fisher deviates (ndf = 3, ddf = 4)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

theorical distribution
sample distribution

statistic ks = 0.064
p-value = 0.788

test-rand.12

poissondeviate expr λ.

0 1 2 3 4 5 6 7

Poisson deviates (� = 3)

0

0.05

0.1

0.15

0.2

0.25

0.3
theorical distribution
sample distribution

statistic cs = 1.918
p-value = 0.964

test-rand.13

binomialdeviate(expr n, π).

0 1 2 3 4 5 6 7 8 9 10

Binomial deviates (n = 10, p = 0.5)

0

0.05

0.1

0.15

0.2

0.25

0.3
theorical distribution
sample distribution

statistic cs = 8.966
p-value = 0.535

test-rand.14

42 mps-rand.mp

geometricdeviate expr π.

1 2 3 4 5

Geometric deviates (p = 0.5)

0

0.1

0.2

0.3

0.4

0.5

0.6
theorical distribution
sample distribution

statistic cs = 1.532
p-value = 0.821

test-rand.15

negativebinomialdeviate(expr n, π).

0 1 2 3 4 5 6 7

Poisson deviates (� = 3)

0

0.05

0.1

0.15

0.2

0.25

0.3
theorical distribution
sample distribution

statistic cs = 11.021
p-value = 0.138

test-rand.16

hypergeometricdeviate(expr N, n, π).

0 1 2 3 4 5

Hypergeometric deviates (N = 10, n = 5, p = 0.5)

0

0.1

0.2

0.3

0.4

0.5
theorical distribution
sample distribution

statistic cs = 1.21
p-value = 0.944

test-rand.17

randomperm (suffix o, expr n). The variable o is defined to be an array o[1], . . . , o[n] which
is a “random” permutation of {1, . . . , n}. The variable o.n is set to be equal to n. The
method is based on rejection method. Here are some possible outputs for n = 7.

March 13, 2012 43

{2, 7, 3, 4, 1, 5, 6}

{6, 4, 2, 1, 3, 5, 7}

{2, 6, 7, 1, 5, 4, 3}

{7, 1, 4, 3, 5, 6, 2}

{7, 3, 4, 2, 1, 5, 6}

{2, 5, 7, 4, 6, 3, 1}

{2, 5, 3, 1, 6, 4, 7}

{3, 2, 1, 5, 6, 4, 7}

{1, 7, 5, 2, 4, 6, 3}

{2, 6, 7, 4, 3, 1, 5}

randomperm(suffix o, expr n). Same thing based on a decreasing stack. It is supposed to
cost less than the previous method.

Table of Contents

Prerequisites . 1

1. Data input and use . 2

Data input . 2

Data use . 2

Important remark . 2

Ignoring variables’ entries . 3

Conditional use of data . 3

First example . 3

Second example . 3

Third example . 4

Declaring data . 4

Sorting data . 5

Weightening data . 5

Copying variables . 6

2. More about data management . 7

Reading data from a file . 7

Storing variables’ entries into a data set . 8

Writing a data set into a file . 8

Conditional use of data with NA (don’t trust what follows) 8

Little bonus . 9

Classification . 10

3. Basic computations . 10

Remark . 11

4. Setting up graphics and coordinate system 11

Predefined pens . 11

5. Graphical control sequences and parameters 11

6. Graphical procedures and their parameters 13

7. Graphical options and their parameters . 14

44 mps-rand.mp

8. Samples . 16

Introduction . 22

1. Numerical computations . 22

2. Usual mathematical functions . 22

3. Continuous Probability distributions . 24

4. Discrete Probability distributions . 27

5. Rather specific Probability distributions 28

6. Graphical tests . 30

