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§0. Introduction.

The Littlewood-Richardson rule is a combinatorial rule describing the multiplication of Schur polynomials;

it was first formulated in [LiRi], but its general validity remained unproved for several decades. The

various proofs that have been given since have created a rich combinatorial theory, with many interrelated

constructions, including the Robinson-Schensted correspondence, and jeu de taquin. We describe several

such constructions, and use them to prove the rule; we are not however narrowly focused on this proof,

and discuss several topics that are not used in it. We make use of certain “modern” (post-1980) notions,

while we do not treat some other notions that figure prominently in many other proofs of the Littlewood-

Richardson rule, and are well documented elsewhere (e.g., [Fult], [Fom]); specifically, we focus on tableau

switching (which includes jeu de taquin), dual equivalence, and coplactic operations*, but do not introduce

Schensted’s algorithm, Knuth equivalence, or Greene’s poset invariant. We do not really define or use

Zelevinsky’s pictures, but they are mentioned in several places, and have inspired much of our work. At

the end, we give an overview of earlier work on the subject, to help clarify its relation to our approach.

The proof we give does not require many technical verifications; moreover, we believe that our main

theorem 3.3.1 makes the correspondences considered more transparent. We do prove in detail some

properties of the constructions that are so basic that they might have been left to the reader; this is

because we feel that it is often these “low-level” properties that really explain why the more significant

theorems work. Most facts presented in this paper are known (at least to experts), although for some it

is hard to find a published reference. Nonetheless the global structure of our proof, and theorem 3.3.1,

seem to be new, even if the latter is related to the known fact that “coplactic operations are compatible

with plactic equivalence” (which in fact motivates their name).

The remainder of this paper is organised in four sections: in §1 we formulate the Littlewood-

Richardson rule; in §2 we define tableau switching and derive an expression for Littlewood-Richardson

coefficients in terms of jeu de taquin; in §3 we define coplactic operations and establish our main theorem,

which implies the Littlewood-Richardson rule; finally in §4 we comment on earlier work.

A word on notation: we always start indexing at 0; in particular this applies to parts of partitions,

and rows, columns, and entries of tableaux. We define [n] = { i ∈ N | i < n } for n ∈ N.

* Arguably coplactic operations are not at all new: even if not considered in isolation, they do occur in various
forms and contexts, as a part of larger constructions; see [LiRi], [Rob], [BrTeKr], [GrKl], [Thom2], [LaSch].
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1 Formulation of the Littlewood-Richardson rule

§1. Formulation of the Littlewood-Richardson rule.

1.1. Symmetric polynomials and partitions.

We fix some n ∈ N, and let {Xi | i ∈ [n] } be a set of n indeterminates. The symmetric group Sn acts

on this set, and hence on the ring Z[X0, . . . , Xn−1], by permuting the indeterminates. A polynomial

P ∈ Z[X0, . . . , Xn−1] is called symmetric if it is fixed by every π ∈ Sn. We shall denote by Λn the set

of symmetric polynomials, which is a subring of Z[X0, . . . , Xn−1] (the ring of invariants for the action

of Sn); since the the action of Sn preserves the natural grading of Z[X0, . . . , Xn−1] by total degree, Λn is

a graded ring, and we shall denote by Λdn the set of homogeneous symmetric polynomials of degree d.

Our interest will be in an explicit description of the multiplicative structure of this ring, expressed on a

particular Z-basis, that of the so-called Schur polynomials. But let us first consider some other Z-bases.

The simplest symmetric polynomials are those which are formed as the sum over an orbit of a mono-

mial in Z[X0, . . . , Xn−1]; we shall call these minimal symmetric polynomials. The monomials in Z[X0, . . . ,

Xn−1] are of the form Xα0
0 · · ·X

αn−1

n−1 , which we shall abbreviate to Xα, where α = (α0, . . . , αn−1) ∈ Nn.

We shall write |α| = degXα =
∑
i∈[n] αi. In order to select a specific representative within each orbit of

monomials, we define a partial ordering ‘≤’ on the set of monomials Xα; or equivalently on the set Nn

of multi-exponents α. This ordering is generated by the relations Xi > Xi+1 and the condition that

Xα < Xβ implies MXα < MXβ for any monomial M (as a consequence, monomials of distinct degrees

are always incomparable); explicitly, one has Xα ≤ Xβ if and only if
∑
i<k αi ≤

∑
i<k βi for k ∈ [n],

and |α| = |β|. Every Sn-orbit of monomials contains a maximum for ‘≤’, which is a monomial Xλ with

λ0 ≥ · · · ≥ λn−1 ≥ 0; such a λ ∈ Nn is called a partition of d = |λ| into n parts, written λ ∈ Pd,n. We

define the minimal symmetric polynomial mλ(n) =
∑
α∈Sn·λX

α, where Sn · λ denotes the Sn-orbit of λ

in Nn. The mλ(n), for λ ∈ Pd,n, form a Z-basis of Λdn. A partition λ of d (without qualification, written

λ ∈ Pd) is defined as a sequence (λi)i∈N of natural numbers (called parts) with λi ≥ λi+1 for all i and

λm = 0 for some m ∈ N, and with
∑
i∈[m] λi = d. A partition is denoted by the parenthesised list of

its parts, with trailing zeros omitted; Pd,n is identified with the subset of Pd of partitions that have at

most n non-zero parts. Finally, we put P =
⋃
d∈N Pd.

In the special case that λ is the partition of d ≤ n for which all non-zero parts are 1 (so there are d such

parts), the minimal symmetric polynomial mλ(n) is called the d-th elementary symmetric polynomial,

and written ed(n). The “fundamental theorem on symmetric functions” states that the polynomials ei(n),

for 1 ≤ i ≤ n, generate Λn as a ring, and are algebraically independent; in other words, Λn is isomorphic

as a graded ring to Z[Y1, . . . , Yn] with deg Yi = i, the isomorphism sending Yi to ei(n). We shall however

not make use of this fact (we refer to [Macd] for many more facts about symmetric polynomials and

functions). We may also express ed(n) as
∑

0≤i0<···<id−1<n
Xi0 · · ·Xid−1

. If in this expression we replace

the strict inequalities between the indices by weak ones, then we obtain another symmetric polynomial

hd(n) =
∑

0≤i0≤···≤id−1<n
Xi0 · · ·Xid−1

, called the d-th complete symmetric polynomial. The fact that

this is indeed a symmetric polynomial follows from the fact that it contains every monomial Xα with

|α| = d exactly once, whence hd(n) =
∑
λ∈Pd,n mλ(n). Note that if we would replace only some strict

inequalities by weak ones, the result would not be a symmetric polynomial. Like the ei(n), the hi(n) for

1 ≤ i ≤ n form a polynomial basis for Λn. We saw that {mλ(n) | λ ∈ Pd,n } is a Z-basis of Λdn; since

monomials of degree d in the generators ei(n) or hi(n) are naturally parametrised by Pd,n, each part i

representing a factor ei(n) or hi(n), we have two more such bases parametrised by the same set.

1.2. Semistandard tableaux and Schur polynomials.

The Schur polynomials of degree d form yet another Z-basis of Λn parametrised by Pd,n. Although their

significance is not immediately obvious from a purely ring-theoretic perspective, they are of fundamental

importance in many situations where the ring Λn is encountered. For instance, Λn occurs as the character

ring of polynomial GLn(C) representations, and the Schur polynomials are the irreducible characters.

They can be defined as quotients of alternating polynomials, or be expressed in terms of power sums

(md(n)) using symmetric group characters; for our purposes however, a purely combinatorial description

will serve best, and it is in that way that we shall define Schur polynomials. For those who wish some
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1.2 Semistandard tableaux and Schur polynomials

motivation for this definition, we refer to places where it is respectively deduced from an algebraic

definition [Macd, I (5.12)], from an explicit construction of irreducible GLn(C) representations [Fult],

and even in an axiomatic approach [Zel2].

Our definition of Schur polynomials is rather similar to the description of ed(n) and hd(n) as the sum

of a collection of monomials Xi0 · · ·Xid−1
; indeed ei(n) and hi(n) are instances of Schur polynomials. The

linear sequence of strict respectively weak inequalities relating the indices i0, . . . , in−1 for ei(n) and hi(n)

are replaced for general Schur polynomials by a more complicated mixture of strict and weak inequalities.

As we remarked above, this does not always give rise to a symmetric polynomial; we shall see however that

it will do so when the inequalities follow a specific pattern associated to certain d-element subsets of N2

called diagrams. For the Schur polynomial sλ(n) (with λ ∈ Pd), this will be the Young diagram Y (λ) of λ,

defined as { (i, j) ∈ N2 | j ∈ [λi] }. We display Young diagrams as sets of squares in the plane, arranged

like matrix entries: for a square (i, j), the row index is i (increasing downwards) and the column index

is j (increasing to the right); the reader is warned however that other display conventions can be found

in the literature. One obtains a sequence of left-justified rows of successive lengths λ0, λ1, . . .; e.g., for

λ = (4, 2, 1) we display Y (λ) as . For future reference we mention the notion of diagonals in N2,

defined as sets { (i, j) ∈ N2 | j − i = k } for some constant k. The value k is called the index of a diagonal,

and we consider the set of all diagonals as totally ordered by their indices.

For defining sλ(n), an index of summation, ranging over [n], is associated with each square of Y (λ).

Thus, each term is identified by an assignment T : (i, j) 7→ Ti,j that can be displayed by writing each

index Ti,j as entry into its square (i, j); the indices are subject to the conditions Ti,j < Ti+1,j (strict

increase down columns) and Ti,j ≤ Ti,j+1 (weak increase along rows) whenever both referenced indices

exist. An assignment T satisfying these conditions is called a semistandard Young tableau of shape λ

and entries in [n]; the set of all such tableaux is denoted by SST(λ, n). For instance, 0 0 1 1
1 2
2

depicts a

semistandard Young tableau of shape (4, 2, 1) and entries in [3], i.e., an element of SST((4, 2, 1), 3). Like

in the case of ed(n) and hd(n), each term in the summation will be a monomial, containing a factor Xk for

each occurrence of k as summation index. Therefore we define for T ∈ SST(λ, n) its weight α = wtT ∈ Nn

to be such that
∏

(i,j)∈Y (λ)XTi,j = Xα, in other words αk counts the occurrences of the entry k in T ; the

tableau just depicted has weight (2, 3, 2). Then for λ ∈ Pd,n, the Schur polynomial sλ(n) is defined by

sλ(n) =
∑

T∈SST(λ,n)

XwtT . (1)

For instance, by enumerating SST((4, 2, 1), 3) one finds that s(4,2,1)(3) is a symmetric polynomial with

15 terms, which equals m(4,2,1)(3) + m(3,3,1)(3) + 2m(3,2,2)(3). The Sn-invariance of sλ(n) is not at all

evident from the definition, however. Although this will follow from properties independently derived

later, let us prove this key fact right now.

1.2.1. Proposition. The Schur polynomials are symmetric polynomials, i.e., sλ(n) ∈ Λdn for λ ∈ Pd,n.

Proof. It suffices to prove for any k < n−1 that sλ(n) is invariant under the interchange of Xk and Xk+1;

to this end we construct an involution of the set SST(λ, n), that realises an interchange of the components

αk and αk+1 of the weight α. We shall leave all entries Ti,j /∈ {k, k + 1} unchanged, as well as

the entries k and k + 1 in any column of T that contains both of them. It is readily checked that

the set of squares containing the remaining entries (i.e., entries k or k + 1 that as such are unique

in their column) meets any given row in a contiguous sequence of squares. Let the entries of that

sequence be r times k followed by s times k + 1 (r or s might be 0); we replace them by s times k

followed by r times k + 1. The transformation of T consists of performing this change independently

for each row; clearly the operation is an involution, and has the desired effect on wtT .

Remark. This involution, which was introduced in [BeKn], is simple to describe, but not the best one

from a mathematical point of view, as it does not give rise to an action of Sn on SST(λ, n) (denoting

interchange of i and i + 1 by si, one may check that application of s0s1s0 and s1s0s1 to the tableau T

shown above gives different results). There is another involution, the relèvement plaxique of [LaSch, §4],

that does extend to an Sn-action; it is related to the coplactic operations discussed in §3 below.
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1.3 Skew shapes, and skew Schur polynomials

Other properties of Schur polynomials are easy to establish. One has wtT ≤ λ for all T ∈ SST(λ, n),

with equality for exactly one such T , namely the tableau with Ti,j = i for all (i, j) ∈ Y (λ); this tableau

will be denoted by 1λ. This fact follows from the observation that in any T ∈ SST(λ, n) \ {1λ}, one

can find at least one entry k + 1 that can be replaced by k (for some k < n − 1). Being a symmetric

polynomial, sλ(n) can be written as a sum of terms mµ(n) for µ ∈ Pd,n with integer coefficients. These

coefficients are all non-negative, they are zero unless µ ≤ λ, and the coefficient of mλ(n) is equal to 1:

the transition from the sλ(n) to the mλ(n) is “unitriangular” with respect to ‘≤’. Then the fact that

{mλ(n) | λ ∈ Pd,n } is a Z-basis of Λn, implies that { sλ(n) | λ ∈ Pd,n } is one as well.

We can now state the problem with which the Littlewood-Richardson rule is concerned, as expressing

multiplication in Λn on the basis of the Schur polynomials. In somewhat more detail: given λ ∈ Pd,n
and µ ∈ Pd′,n, we wish to determine the integer coefficients cνλ,µ for all ν ∈ Pd+d′,n, such that

sλ(n)sµ(n) =
∑

ν∈Pd+d′,n

cνλ,µsν(n). (2)

We have suppressed n in the notation cνλ,µ, since it will turn out that this coefficient is independent

of n (although n must be sufficiently large for cνλ,µ to appear in the formula in the first place). More

generally, for identities valid for any number n of indeterminates, we shall sometimes write hd for hd(n)

and sλ for sλ(n), etc. (there is an algebraic structure called the ring of symmetric functions that justifies

this notation, see [Macd], but we shall not discuss it here). The cνλ,µ are called Littlewood-Richardson

coefficients. Representation theoretic considerations show that cνλ,µ ∈ N; the Littlewood-Richardson rule

will in fact describe the cνλ,µ as the cardinalities of certain combinatorially defined sets.

1.3. Skew shapes, and skew Schur polynomials.

In order to formulate the Littlewood-Richardson rule, we need to extend the class of tableaux beyond that

of the semistandard Young tableaux. Giving N2 its natural partial ordering (simultaneous comparison of

both coordinates), Young diagrams can be characterised as its finite order ideals (if r ∈ Y (λ), then also

q ∈ Y (λ) for all q ≤ r). For the class of skew diagrams, this is relaxed to convexity with respect to ‘≤’: a

skew diagram D is a finite subset of N2 for which p, r ∈ D and p ≤ q ≤ r imply q ∈ D. The summation

analogous to (1) using a skew diagram will still give rise to a symmetric polynomial (one may for instance

check that the proof of proposition 1.2.1 remains valid). A skew diagram can always be written as the

difference of two Young diagrams: D = Y (λ) \ Y (µ) with Y (µ) ⊆ Y (λ); this representation is not unique

in general (although in some cases it is, for instance when the sets of rows and columns meeting D are

both initial intervals of N). In many cases, for instance when considering the shapes of tableaux, it will

be important to fix the partitions λ, µ used to represent a skew diagram, which leads us to define the

related but distinct notion of a skew shape.

A skew shape is a symbol λ/µ where λ, µ ∈ P and Y (µ) ⊆ Y (λ); the set of all skew shapes will

be denoted by S. For λ/µ ∈ S we define Y (λ/µ) = Y (λ) \ Y (µ) and |λ/µ| = |Y (λ/µ)| = |λ| − |µ|. A

shape of the form λ/(0) is called a partition shape; occasionally we consider partitions as skew shapes,

in which case λ is identified with λ/(0). It is a trivial but useful fact that if |λ/µ| ≤ 3, no diagonal can

meet Y (λ/µ) in more than one square. We shall say that a skew shape χ represents the product χ0 ∗ χ1

of two other skew shapes if Y (χ) can be written as a disjoint union of skew diagrams χ̄0 and χ̄1, where

χ̄k is obtained by some translation from Y (χk) (k = 0, 1), while for all (i, j) ∈ χ̄0 and (i′, j′) ∈ χ̄1 one

has i > i′ and j < j′. For instance,

represents ∗

One could define an equivalence relation on S such that this relation defines a monoid structure on the

quotient set, but this would be cumbersome, and it is not really needed for our purposes.
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1.4 Littlewood-Richardson tableaux

Let χ = λ/µ ∈ S; a skew semistandard tableau T of shape χ and with entries in [n] is given by

specifying χ itself, together with a map Y (χ)→ N written (i, j) 7→ Ti,j , satisfying Ti,j ∈ [n], Ti,j < Ti+1,j

and Ti,j ≤ Ti,j+1 whenever these values are defined. The set of all such T is denoted by SST(χ, n),

and SST(χ) =
⋃
n∈N SST(χ, n); we identify SST(λ) with SST(λ/(0)). The weight α = wtT ∈ Nn of

T ∈ SST(χ, n) is defined by
∏

(i,j)∈Y (χ)XTi,j = Xα, and the skew Schur polynomial sχ(n) by

sχ(n) =
∑

T∈SST(χ,n)

XwtT . (3)

Note that unlike in (1), there is no restriction to Pd,n here, for the partitions λ, µ forming χ; the skew

Schur polynomial will be non-zero as long as there are no columns in Y (χ) of length exceeding n. If

a skew shape χ represents the product χ0 ∗ χ1 of two other skew shapes, then there is an obvious

weight preserving bijection SST(χ) → SST(χ0) × SST(χ1); therefore sχ = sχ0
sχ1

. In this case we shall

denote sχ by sχ0∗χ1 , or if χ0 = (λ/(0)) and χ1 = (µ/(0)), by sλ∗µ; our problem can be restated as finding

the decomposition of the skew Schur polynomial sλ∗µ(n) as a sum of ordinary Schur polynomials. In fact

the Littlewood-Richardson rule will describe the decomposition of any skew Schur polynomial sχ(n).

1.3.1. Definition. For any skew shape χ and all ν ∈ P|χ|, the numbers cνχ are defined as the coefficients

appearing in the decomposition formula

sχ =
∑
ν∈P|χ|

cνχsν . (4)

It is clear that if χ represents (λ/(0)) ∗ (µ/(0)), then one has cνχ = cνλ,µ.

1.4. Littlewood-Richardson tableaux.

Let λ/µ ∈ S, and ν ∈ P with |λ/µ| = |ν|; we shall now introduce the objects that are counted by cνλ/µ,

which will be called Littlewood-Richardson tableaux of shape λ/µ and weight ν. We need a preliminary

definition. For T ∈ SST(λ/µ) and k, l ∈ N, define T lk to be the number of entries l in row k of T , i.e.,

the cardinality of the set { j ∈ [λk] \ [µk] | Tk,j = l }.

1.4.1. Definition. Two tableaux T ∈ SST(λ/µ) and T̄ ∈ SST(ν/κ) are called companion tableaux if

T lk = T̄ kl for every k, l ∈ N. In this case T is called ν/κ-dominant (and T̄ is λ/µ-dominant).

Here is an example of a pair of companion tableaux, with a table of the pertinent values T lk = T̄ kl :

T =

0 1

0 1 1 3

0 2 2 3

1 4 4 5

3 5

, T̄ =

0 1 2

0 1 1 3

2 2

1 2 4

3 3

3 4

, (5)

(
T lk
)
0≤k<5
0≤l<6

=


1 1 0 0 0 0

1 2 0 1 0 0

1 0 2 1 0 0

0 1 0 0 2 1

0 0 0 1 0 1

 . (6)

Note that if T is ν/κ-dominant, then wtT = ν − κ, since (wtT )j =
∑
i T

j
i =

∑
i T̄

i
j = νj − κj . We shall

simply say that T is κ-dominant if it is ν/κ-dominant for ν = κ + wtT ; this notion is used in [Litm2].

T may have companion tableaux of different shapes, but at most one of a given shape ν/κ: the multiset of

entries of any row is determined by T , and they must be weakly increasing. Therefore different companion

tableaux of T differ only by horizontal slides of their rows; in the above example one could for instance

shift the first 4 rows of T̄ one place to the left. To test for κ-dominance of a tableau T , it suffices to

construct the unique candidate for T̄ and check that its columns are strictly increasing.
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1.4 Littlewood-Richardson tableaux

1.4.2. Definition. A tableau L ∈ SST(λ/µ) is a Littlewood-Richardson tableau if it is (0)-dominant.

The set of all ν/(0)-dominant tableaux in SST(λ/µ) is denoted by LR(λ/µ, ν).

Here is an example Littlewood-Richardson tableau L, and its companion Young tableau L̄.

L =

0 0

0 1 1

0 1 2 2

0 1 3

2 4

, L̄ =

0 0 1 2 3

1 1 2 3

2 2 4

3

4

. (7)

The given definition of Littlewood-Richardson tableaux is not the traditional one, but that definition can

be easily derived from it, as follows. A pair of companion tableaux T ∈ SST(λ/µ) and T̄ ∈ SST(ν/κ)

will determine a bijection p:Y (λ/µ) → Y (ν/κ), if one fixes for each k, l a bijection between the sets of

squares whose entries are counted by T lk and T̄ kl . Both these sets are contiguous sequences of squares

of some row; we choose the bijection that reverses the left-to-right ordering of their squares. For the

companion tableaux T, T̄ in (5) we get the following bijection, indicated by matching labels:

p:

b a

f e d c

l k h g

q p n m

s r

−→

b f l

a d e q

h k

c g s

n p

m r

(8)

We have the following property: for any square (i, j) ∈ Y (λ/µ), all squares whose images are on the

same row as p(i, j) and to the left of it, themselves lie in a column to the right of (i, j), and in the same

row or above it; in formula: if p(i, j) = (r, c) and p(i′, j′) = (r, c′) with c′ < c, then j′ > j and i′ ≤ i.

For instance, in the second part of (8) the labels d and a appear in the same row as e and to its left;

therefore these labels appear in the first part of (8) strictly to the right of e, and weakly above it. Now

given T and κ, one can construct p—and implicitly T̄—by traversing Y (λ/µ) in such an order that the

mentioned other squares (i′, j′) are always encountered before (i, j) is (in the example the alphabetic

order of the labels has this property): the image p(i, j) can then be taken to be the first currently unused

square in row number Ti,j of Y (ν/κ). If moreover the traversal is by rows (like the alphabetic order in the

example), then strict increase in the column of T̄ at the square p(i, j) can be checked as soon as p(i, j) is

located: if the square directly above p(i, j) lies in Y (ν/κ), then it must have been included in the image

of p before p(i, j) is. What this amounts to, is that at each point during the construction, the union of

Y (κ) and the image of p so far constructed must be a Young diagram (this can be checked in (8), adding

labels in alphabetic order).

1.4.3. Proposition. A tableau T ∈ SST(λ/µ, n) is κ-dominant if and only if the following test

succeeds. A variable α ∈ Nn is initialised to κ; then the squares (i, j) ∈ Y (λ/µ) are traversed by

weakly increasing i, and for fixed i by strictly decreasing j: at square (i, j) the component αTi,j is

increased by 1. The test succeeds if and only if one has α ∈ P throughout the entire procedure.

For κ = (0) this is still not quite the traditional description of Littlewood-Richardson tableaux, which

states that the word over the alphabet [n] obtained by listing the entries Ti,j in the order described in the

proposition (e.g., for the Littlewood-Richardson tableau L shown in (7), the word 0 0 1 1 0 2 2 1 0 3 1 0 4 2)

should be a “lattice permutation” (see §3 for a definition; one also finds the terms “lattice word” and

“Yamanouchi word”). However, if one expands the definition of that term, one finds that testing whether

the indicated word read off from T is a lattice permutation amounts to performing the test of the

proposition with κ = (0). Incidentally, the (very old) term lattice permutation appears to be related to

the fact that the sequence of values assumed by α in the proposition describes a path (from κ to κ+wtT )

in the lattice Nn, that is confined to remain inside the cone
⋃
d∈N Pd,n ⊆ Nn. It may also be noted that

the original formulation in [LiRi] is very close to our definition 1.4.2, see §4. We can now state the Rule.
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1.4 Littlewood-Richardson tableaux

1.4.4. Theorem [Littlewood-Richardson rule]. For all χ ∈ S and ν ∈ P one has cνχ = # LR(χ, ν).

We shall present a proof of this theorem in the course of §§2, 3. Given the definitions (4) of cχ and

(1) and (3) of (skew) Schur polynomials, it suffices to construct a bijection

R: SST(χ, n)→
⋃

ν∈P|χ|,n

LR(χ, ν)× SST(ν, n) (9)

for any n, such that whenever R(T ) = (L,P ), one has wtT = wtP . Once R is defined, the fact that

the same set LR(χ, ν) occurs, independently of n (provided only that ν occurs in the summation) will

prove that the coefficient cνχ is independent of n, as we claimed. We shall refer to R as Robinson’s

correspondence, since it was first described in [Rob] (albeit in different terms, not using tableaux).

It is natural to describe the correspondence by separately defining its components R0 and R1, where

R(T ) = (R0(T ),R1(T )).

The decomposition of ordinary Schur functions is trivial, so according to the Littlewood-Richardson

rule, LR(λ/(0), ν) should be empty unless λ = ν, in which case it should be a singleton. Indeed, for

companion tableaux T ∈ SST(λ/(0)) and T̄ ∈ SST(ν/(0)) one has wtT = ν and wt T̄ = λ, which

together with wtT ≤ λ and wt T̄ ≤ ν imply λ = ν and T = T̄ = 1λ. Now let L ∈ LR(χ, ν) be a

Littlewood-Richardson tableau whose shape χ represents λ ∗ µ. Then the test of proposition 1.4.3 for

(0)-dominance succeeds; if one interrupts the test after traversing the squares of the factor µ of λ ∗ µ,

one sees that the restriction Lµ of L to that factor is (0)-dominant, and hence a Littlewood-Richardson

tableau. Being of partition shape, Lµ must then be equal (up to translation) to 1µ; in particular, the

value of α at the point of interruption is µ. The remainder of the test of (0)-dominance of L then shows

that its restriction Lλ to the factor λ of λ∗µ is ν/µ-dominant. By the symmetry of companion tableaux,

this proves:

1.4.5. Proposition. # LR(χ, ν) = # LR(ν/µ, λ) for χ ∈ S representing λ ∗ µ.

As an example of the correspondence underlying this proposition, we derive from (7) the following

pair of corresponding Littlewood-Richardson tableaux, for λ = (5, 4, 3, 1, 1), µ = (4, 2, 1), ν = (6, 5, 5, 3, 2):

0 0 0 0

1 1

2

0 0 1 2 3

1 1 2 3

2 2 4

3

4

←→

0 0

0 1 1

0 1 2 2

0 1 3

2 4

In order to use the Littlewood-Richardson rule to decompose a skew Schur polynomial sχ on the

basis of Schur polynomials, an effective enumeration is required of the union of sets LR(χ, ν), as ν varies

over P|χ|. This can be done using an efficient search procedure, in which the choices for the entries of

the squares of Y (χ) are fixed in the same order as the traversal of proposition 1.4.3 (alternatively, any

“valid reading order” as defined below works equally well). For any square (i, j), the possible values Ti,j
that can be chosen must make the test of that proposition succeed (i.e., they must index a part of the

partition α constructed so far that can be increased), and they must satisfy the monotonicity conditions

for the rows and columns of T . The reason that we called the search efficient, is that there is always at

least one value that satisfies all these conditions (cf. [vLee2, proposition 2.5.3]), so that the search tree will

not have unproductive branches. Here we have assumed that no upper limit n is imposed on the number

of non-zero parts of ν and hence on the entries in the Littlewood-Richardson tableau T ; such a restriction

can however be incorporated into the search, by placing an additional condition on the values Ti,j tried:

they should be sufficiently small to allow column j of T to be completed in a strictly increasing manner.

With this extra requirement there will still always remain at least one possible value, unless Y (χ) has

columns of length exceeding n (in which case of course no suitable tableaux T exist at all).
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1.5 Pictures and reading orders

By contrast, no efficient search procedure is known for enumerating just a single set LR(χ, ν), i.e.,

one for which the size of the search tree that has to be traversed is proportional to # LR(χ, ν). In fact no

sufficient condition for LR(χ, ν) to be non-empty, that does not amount to actually finding an element,

is even known; therefore it is not possible in general to tell beforehand whether some value tried for

an entry will lead to any solutions. So it is worth observing that, while all bijections described in this

paper are easily computable, it is in some cases much harder to enumerate the sets themselves linked by

these bijections. We add one more remark, prompted by the fact that many texts give the Littlewood-

Richardson rule only in the form cνλ,µ = # LR(ν/µ, λ), while defining Littlewood-Richardson tableaux in

terms of a reading of the tableau. This would falsely suggest that the rule is not practical for calculating

a product sλsµ, since it would seem to require either the construction of complete trial tableaux of

varying shapes before testing the Littlewood-Richardson condition (which would fail in most cases), or

separate searches for any plausible shape ν/µ and fixed weight λ (which is also unattractive for reasons

just mentioned). In reality, by viewing the search strategy outlined above for Littlewood-Richardson

tableaux of a shape representing λ ∗ µ from the perspective of the companion tableaux, one easily finds

an efficient enumeration procedure for
⋃
ν LR(ν/µ, λ). Actually, such an enumeration procedure is just

what the rule, in its original form given by Littlewood and Richardson, describes; a literal quotation of

this description can be found in §4 below.

1.5. Pictures and reading orders.

We have constructed a bijection p:Y (λ/µ) → Y (ν/κ) corresponding to a pair of companion tableaux

T ∈ SST(λ/µ) and T̄ ∈ SST(ν/κ), in order to derive proposition 1.4.3. Since T and T̄ can easily

be reconstructed from p, one may study the bijections that arise in this way, in place of such pairs

of companion tableaux, or of ν/κ-dominant tableaux of shape λ/µ. The conditions that T and T̄ be

semistandard tableaux translate into a geometric characterisation of these bijections; this leads to the

concept of pictures introduced in [Zel1]. Due to the symmetry between companion tableaux, the inverse

of any picture is again a picture. One important aspect of pictures is that there are many equivalent

ways to define them (like the different characterisations of companion tableaux above). We shall not

discuss pictures in depth here, for which we refer to [FoGr] and [vLee2], but it is useful to make a few

observations that result from study of pictures.

We have observed above that if one traverses a row from left to right, then the row index of the

(inverse) image by p increases weakly, while the column index decreases strictly. A similar condition holds

for traversal of a column from top to bottom: the row index of the (inverse) image increases strictly,

while the column index decreases weakly (this can be proved by induction on the column considered).

Therefore, when verifying κ-dominance with a single traversal of T (as in proposition 1.4.3), it is not

necessary to have encountered all squares in rows above it before handling a square (i, j): only those in

column j or to its right can influence the test made at (i, j). We might for instance also traverse columns

from top to bottom, processing the columns from right to left. We shall consider any ordering of the

squares that encounters (i′, j′) before (i, j) whenever i′ ≤ i and j′ ≥ j to be a valid reading order. The

two cases where one proceeds systematically by rows or by columns merit special names: we shall refer

to the former as the Semitic reading order (after the Arabic and Hebrew way of writing), and to the

latter as the Kanji reading order (after the Japanese word for Chinese characters, which are thusly read).

In (8), the Semitic reading of the left diagram gives abcdefghklmnpqrs, the Kanji reading order gives

acbdgmehnfkprlqs, while acbdegfhkmlnprqs corresponds to yet another a valid reading order.

In constructing the picture p corresponding to a ν/κ-dominant tableau T , a distinction is forced

between the values at all squares of Y (λ/µ), i.e., p is injective even if T is not. Such a distinction can be

used in order to apply to T operations that are initially defined only for tableaux with distinct entries

(§2 provides an example): it suffices to use an injective map r : Y (ν/κ)→ N such that r ◦ p is a tableau.

Taking for r the map corresponding to the Semitic reading of Y (ν/κ), one obtains a tableau S = r◦p such

that Ti,j < Ti′,j′ implies Si,j < Si′,j′ , and when Ti,j = Ti′,j′ one has Si,j < Si′,j′ if and only if j < j′; this

is essentially the operation of standardisation defined in §2. We note however that r ◦ p will be a tableau

whenever r corresponds to any valid reading order; such tableaux may be called specialisations of p. It

is shown in [vLee2] that all relevant operations that are defined for T in terms of its standardisation S
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could equally well be defined in terms of any specialisation of p. When studying semistandard tableaux

however, it is simplest to use the standardisation (as we shall do), mainly because it does not depend on

any choice of a shape ν/κ for which T is ν/κ-dominant.

One can develop the theory of the Littlewood-Richardson rule entirely in terms of pictures; doing so

clarifies the structure behind many operations and makes certain symmetries explicit. Nevertheless we

believe the exposition in terms of tableaux that we shall give is easier to understand, which is in part due

to the fact that pictures are, in spite of their name, more difficult to visualise than tableaux are.

§2. Tableau switching and jeu de taquin.

In this section we shall consider a combinatorial procedure that will turn out to be intimately related

to the Littlewood-Richardson rule. This procedure is essentially Schützenbergers jeu de taquin, but we

prefer to introduce it in a slightly different form called “tableau switching” (a term that was introduced

in [BeSoSt] for an operation that, although defined in a somewhat different way, constructs the same

correspondence between pairs of skew tableaux as we shall do below).

2.1. Chains in the Young lattice and standardisation.

Inclusion of Young diagrams defines a partial ordering on the set P of partitions, which shall be denoted

by ‘⊆’; the poset (P,⊆) is called the Young lattice. We define a skew standard tableau of shape λ/µ to

be a saturated increasing chain in the Young lattice from µ to λ, i.e., a sequence of partitions starting

with µ and ending with λ such that the Young diagram of each partition is obtained from that of its

predecessor by the addition of exactly one square. We shall denote the set of all skew standard tableaux

of shape λ/µ by ST(λ/µ), and say that each of its elements has size |λ/µ|. A skew standard tableau of

partition shape is called a standard Young tableau, and we write ST(λ) for ST(λ/(0)). If its shape λ/µ

is given, then specifying some S ∈ ST(λ/µ) amounts to putting a total ordering on Y (λ/µ), describing

the order in which the squares are added. This can be done by labelling the squares in the desired

order with increasing numbers (or elements of some other totally ordered set); these labels will increase

along each row and column, whence the name tableau. For instance, the sequence with Young diagrams

, , , , , is represented by 3
0 1

2 4
. In the literature it is usually this representation

that is called a standard tableau, but chains of partitions will be more convenient for us to work with.

In fact any skew semistandard tableau T determines a chain of partitions, with the convention that

the squares (i, j) are ordered by increasing value of their entries Ti,j , or in case these entries are equal,

by increasing column number j; this chain (a skew standard tableau) will be called the standardisation

of T . For instance, the standardisation of 2
0 0

2 3
is the skew standard tableau depicted above. Any

skew semistandard tableau is determined by its standardisation together with its weight, but a given

combination of a skew standard tableau S and a weight α does not necessarily correspond to any skew

semistandard tableau T . The condition for the existence of T is that any sequence of squares successively

added in S that according to α should have the same entry k in T (so the sequence has length αk ≥ 2)

should lie in columns whose numbers strictly increase; another formulation is that the indices of the

diagonals of the squares should increase (in this case increase is automatically strict, since no two squares

on the same diagonal can be successively added). When these equivalent conditions are met, we shall say

that S is compatible with α.

2.2. Tableau switching and jeu de taquin.

Among the skew shapes λ/µ of with |λ/µ| = 2, two different kinds can be distinguished: shapes for which

the two squares of Y (λ/µ) are incomparable in the natural ordering of N2, and which shapes therefore

admit two different skew standard tableaux, and shapes for which those squares lie in the same row or

column (and are adjacent), which shapes admit only one skew standard tableau. The latter kind of shapes

will be called dominos. We shall give a construction, based on a certain class of doubly indexed families of

partitions, that can be found in [vLee1, 2.1.2]. Let I = { i ∈ Z | k ≤ i ≤ l } and J = { j ∈ Z | m ≤ j ≤ n }
be intervals in Z, and let (λ[i,j])i∈I,j∈J be a family of partitions; we shall call this a tableau switching
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2.2 Tableau switching and jeu de taquin

family on I × J if each “row” λ[i,m], . . . , λ[i,n] and each “column” λ[k,j], . . . , λ[l,j] is a skew standard

tableau, and if λ[i,j+1] 6= λ[i+1,j] whenever λ[i+1,j+1]/λ[i,j] is not a domino. Here is a small example:

(
λ[i,j]

)
0≤i,j<4

=



◦  (10)

Whenever either the sequence λ[i,j], λ[i,j+1], λ[i+1,j+1] or the sequence λ[i,j], λ[i+1,j], λ[i+1,j+1] is specified

to be some skew standard tableau of size 2, there is a unique value for the remaining partition for which

one obtains a tableau switching family on {i, i+1}×{j, j+1} (because if λ[i+1,j+1]/λ[i,j] is a domino, then

necessarily λ[i,j+1] = λ[i+1,j]). It follows that if values λ[i,j] are prescribed for indices [i, j] traversing some

“lattice path” going from [k,m] to [l, n] (a zig-zag path in which at each step either i or j increases by 1)

by any skew standard tableau, then there is a unique way to extend these values to tableau switching

family on I × J . Applying this to the path passing through [l,m] enables the following definition.

2.2.1. Definition. Let S and T be skew standard tableaux of respective shapes µ/ν and λ/µ. The pair

(T ′, S′) of skew standard tableaux obtained from (S, T ) by tableau switching, written (T ′, S′) = X(S, T ),

is defined by the existence of a tableau switching family (λ[i,j])k≤i≤l; m≤j≤n such that

S = (λ[k,m], . . . , λ[l,m]),

T ′ = (λ[k,m], . . . , λ[k,n]),

T = (λ[l,m], . . . , λ[l,n]);

S′ = (λ[k,n], . . . , λ[l,n]).

As an example, the tableau switching family (10) establishes the fact that X( 0 1
2
, 1

2
0

) = ( 0 1
2
, 1

0
2

). A

visual way to interpret this definition is the following. Represent S and T together in the skew diagram

Y (λ/ν), by filling the squares of their diagrams with labels coming from two disjoint totally ordered sets

A = {ak < · · · < al−1}, B = {bm < · · · < bn−1}; for instance one can take red numbers ai for S and blue

numbers bj for T . We shall associate any vertical segment from [i, j] to [i+ 1, j] in a lattice path with the

label ai, and any horizontal segment from [i, j] to [i, j+ 1] with the label bj . Then each lattice path from

[k,m] to [l, n] gives rise to a shuffle of the sets A and B, i.e., a total ordering on A∪B that is compatible

with the orderings of A and B individually. Along each lattice path a skew standard tableau of shape

λ/ν can be read off from the tableau switching family, which can be represented by filling the squares of

Y (λ/ν) with the elements of A ∪B, using the total ordering of that set associated to the lattice path.

The initial data of Y (λ/ν) filled with elements of A according to S, and elements of B according

to T , defines the part of the tableau switching family along the lattice path that traverses the left and

bottom edges. To determine the other members of that family, we shall gradually transform the path,

determining a single new member λ[i,j] at the time, while updating the filling of Y (λ/ν) with elements

of A ∪B so as to correspond to the skew standard tableau read off along the current path, as described

above. Eventually the whole family will be determined, and we shall have obtained the lattice path that

traverses the top and right edges, from which T ′ and S′ can be read off. The change to the lattice path

at each step amounts to transposing one ai with one bj in the shuffle, and only a minimal modification, if

any, is needed to update the filling of Y (λ/ν): if the squares filled with ai and bj are adjacent, then these

entries are interchanged, and otherwise the filling is unchanged (this easily follows from definition 2.2.1).

Any interchange thus made is a special case of a switch in the sense of [BeSoSt], and this shows that

X(S, T ) coincides with the result of the tableau switching procedure defined there (in fact that procedure

is more liberal, and allows using intermediate fillings that do not correspond to any lattice path).

Here is an example of a transformation of the fillings using the family of (10), and a not very

systematic choice of intermediate lattice paths. The paths used are identified by the shuffles written

above the tableaux; in many steps this is the only thing that changes. We have used numbers in italics

for the ai, and numbers in bold face for the bj .
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012012

0 1 1

2 2

0

010212

0 1 1

0 2

2

001212

0 1 1

0 2

2

001122

0 1 1

0 2

2

001122

0 1 1

0 2

2

001122

0 1 1

0 2

2

001122

0 1 1

0 2

2

001212

0 1 1

0 2

2

010212

0 1 1

0 2

2

012012

0 1 1

2 0

2

In retrospect, some traces of the tableau switching procedure can be already be found in [Haim1] and

in the tables de promotion of [Schü2]. The symmetry of our definition with respect to i and j has an

obvious but important consequence.

2.2.2. Theorem. Tableau switching is involutive: if X(S, T ) = (T ′, S′), then X(T ′, S′) = (S, T ).

One particular way to transform the lattice path via [l,m] into the one via [k, n], i.e., to go from the

shuffle in which all ai precede all bj to the one in which all bj precede all ai, is to start transposing the final

element al−1 of A with all elements of B, then to do the same with al−2, etc. If, while processing each ai,

we temporarily view the square labelled by it as “empty”, then each interchange of entries corresponds

to sliding some bj either up or to the left, into the empty square; the description we so obtain for the

transformation of the tableau labelled by B before and after processing ai is exactly that of in inward jeu

de taquin slide into the square initially containing ai (see [Schü3], or for instance [Fult]). It follows that

if X(S, T ) = (T ′, S′), then T ′ is obtained from T by a sequence of inward jeu de taquin slides, which we

shall write as T . T ′. In the example displayed above we obtain the transformation T . T ′ (the entries

in bold face) as follows:
1

2
0

.
1

0 2 .
1

0 2 .
0 1
2 .

By theorem 2.2.2, one also has S / S′, i.e., S′ is obtained from S by a sequence of outward jeu de taquin

slides. For the italic entries above:

0 1
2 /

1
0
2

/
1

0
2

/
1

0
2

.

The following simple observation will allow us to define tableau switching for skew semistandard

tableaux as well as for skew standard tableaux.

2.2.3. Proposition. If T, T ′ are skew standard tableaux with T . T ′, then T ′ is compatible with a

weight α (as defined in subsection 2.1) if and only if T is.

Proof. Compatibility of T and T ′ with α is checked by comparing positions of certain pairs of squares

added at successive steps in the chain of partitions; therefore the general case reduces to the one where

X(S, T ) = (T ′, S′) with T of size 2 and S of size 1. The validity in this case is fairly obvious by inspection,

but here is a formal argument. We show that the relative order of the diagonals of the two entries of T

is unchanged in T ′; then compatibility with α does not change either. For each of the two entries of T ,

the index of its diagonal changes by at most 1 during the slide, and the two entries certainly do not

exchange places. Then since the only other square involved, that of S, does not lie on the same diagonal

as either of the entries of T , the relative order of their diagonals remains unchanged by the slide.

Remark. In fact even more is true: if T . T ′ for T ∈ ST(λ/µ) and T ′ ∈ ST(λ′/µ′), then for any skew

shape ν/κ there exists a ν/κ-dominant tableau in SST(λ/µ) with standardisation T if and only if there

is one in SST(λ′/µ′) with standardisation T ′ (both have weight ν − κ). This is a bit more difficult to

prove, but the proof is still straightforward: one has to prove that after modifying the relevant companion

tableau to reflect the slide T . T ′, it still satisfies the tableau condition. This is essentially what is shown

in [vLee2, theorem 5.1.1]; see also subsection 3.4 below.

2.2.4. Definition. Let T1, T2 be skew semistandard tableaux such that tableau switching can be applied

to the pair (S1, S2) of their standardisations; then tableau switching can also be applied to (T1, T2),

resulting in a pair of skew semistandard tableaux (T ′2, T
′
1) = X(T1, T2) determined by the conditions that

their standardisations are (S′2, S
′
1) = X(S1, S2), and the weight of T ′i is equal to that of Ti (i = 1, 2).

The notion of jeu de taquin slides is also extended to this case; we write T2 . T
′
2 and T1 / T

′
1.
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2.3 Jeu de taquin equivalence and dual equivalence

We note one further property of tableau switching that is immediate from its definition. From

T ∈ ST(µ/ν) and U ∈ ST(λ/µ), a skew standard tableau of shape λ/ν can be formed by joining together

the chains of partitions; we shall denote it by T |U . As a filling of the diagram Y (λ/ν), it is the union

of the fillings for T and U , after making sure (by adding some offset) that all entries used for U exceed

those for T . Then by similarly joining tableau switching families we get:

2.2.5. Proposition. If X(S, T ) = (T ′, S′) and X(S′, U) = (U ′, S′′), then X(S, T |U) = (T ′|U ′, S′′).

2.3. Jeu de taquin equivalence and dual equivalence.

Jeu de taquin defines an equivalence relation on skew standard tableaux, and on skew semistandard

tableaux, generated by the relations T . T ′; this relation is called jeu de taquin equivalence. Tableau

switching allows us to define another equivalence relation, called dual equivalence (see [Haim2]).

2.3.1. Definition. Two skew (semi)standard tableaux S1, S2 of equal shape are called dual equivalent

if for any tableau T of appropriate shape, and with X(Si, T ) = (T ′i , S
′
i) for i = 1, 2, one has T ′1 = T ′2.

It follows from proposition 2.2.5 that the tableaux S′1 and S′2 in this definition are also dual equivalent.

The meaning of dual equivalence can be expressed in two ways in terms of jeu de taquin. Firstly, if

S1 and S2 are dual equivalent, then they have the same shape, and this remains true whenever the same

sequence of outward jeu de taquin slides is applied to each of them (i.e., each slide starts with the same

empty square in both cases); this is because the tableaux T ′1 and T ′2 record the squares in which the

successive slides end. Secondly, when S1 and S2 are used to determine sequences of inward slides, then

these sequences will always have the same effect when applied to any tableau T .

It is somewhat surprising that there exist pairs of distinct skew standard tableaux that are dual

equivalent, since the definition refers to arbitrarily large tableaux T , and therefore for instance to ar-

bitrarily long sequences of jeu de taquin slides. To describe the most elementary cases of such pairs,

we need some notation for skew standard tableaux of size 3. As mentioned above, a skew standard

tableau T ∈ ST(λ/µ) can be described by an ordering of the squares of Y (λ/µ). If |λ/µ| = 3 those

squares lie on distinct diagonals, which are ordered by index, so we may specify T using a permutation

of the letters a, b, c, which we shall call the type of T . The convention used is that the three positions in

the word correspond to the diagonals, while a, b, and c, respectively indicate the first second and third

square added. As an example, the tableau displayed as 1 2
3

is of type cab.

2.3.2. Proposition. Let λ/µ be a shape with |λ/µ| = 3. Then ST(λ/µ) contains a tableau of type bca

if and only if it contains a tableau of type acb, and if so, the two tableaux are dual equivalent. Similarly,

ST(λ/µ) contains a tableau of type bac if and only if it contains one of type cab, and if so, the two are

dual equivalent.

Proof. The shape may restrict the possible types of tableaux, due to adjacency of squares: the leftmost

or upper one of two adjacent squares must be added before the other one. But within either of the sets

of types {bca, acb} or {bac, cab}, the relative order among squares of Y (λ/µ) on successive diagonals is

fixed (only the ordering between the outer diagonals differs), so possibility of one type implies that of

the other. For the dual equivalence, we shall show that any pair of tableaux matching the hypotheses of

the proposition is transformed by a single jeu de taquin slide into another such pair, having in particular

equal shapes; then dual equivalence follows by induction on the size of the tableau T in definition 2.3.1

(using proposition 2.2.5). So let S1, S2 ∈ ST(λ/µ) either have types {bca, acb} or types {bac, cab}, and

let T be of size 1 occupying a square t, with X(Si, T ) = (T ′i , S
′
i) defined for i = 1, 2.

Suppose first that t lies on a diagonal that does not meet Y (λ/µ); in this case we shall show that S′i
has the same type as Si (i = 1, 2), and that T ′1 = T ′2 (which implies that S′1 and S′2 have the same shape).

The former statement is proved in essentially the same way as proposition 2.2.3: no transpositions are

possible in the ordering by diagonal index of the squares of Si, because diagonal indices change by at

most one during the slide, and at most one square is available on each diagonal. To show T ′1 = T ′2, we

view each computation of X(Si, T ) as three successive applications of an inward slide to T ; we claim that
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the sequence of actual moves of the square of T (i.e., ignoring the slides that leave it in place) is the same

for X(S1, T ) as for X(S2, T ). The only difference between the two cases is the relative order of the slides

into the squares on the outer diagonals of Y (λ/µ), which squares cannot both be adjacent to t; then at

least one of these slides leaves the square of T in place (both for i = 1 and i = 2). Therefore the relative

order of these two slides makes no difference, proving our claim.

If t lies a diagonal that does meet Y (λ/µ), then that must be the middle diagonal, and Y (λ/µ)

must have the form . This is impossible if the types of S1, S2 are {bca, acb}, and the proof for that

case is therefore complete. We are left with the case that can be depicted as S1 = 0 2
1

/ 0
1 2

= S′1

and S2 = 0 1
2

/ 1
0 2

= S′2; we see that S′1 and S′2 have the same shape (so T ′1 = T ′2), and types

bca respectively acb, whence they match the case just completed.

This basic case implies many others by the following immediate consequence proposition 2.2.5:

2.3.3. Proposition. If S1 and S2 are dual equivalent, and also T1 and T2, then so are S1|T1 and S2|T2.

2.4. Confluence of jeu de taquin.

A crucial property of jeu de taquin is its confluence, i.e., the property that whenever T . T1 and T . T2,

then there exists a tableau U such that T1 . U and T2 . U . Since any sequence of slides can be extended

until a tableau of partition shape is reached, and no further (Young tableaux are the normal forms for

jeu de taquin), this is equivalent to saying that for any skew tableau T there is a unique Young tableau P

such that T . P . Although this property will follow as a corollary to our main theorem in §3, we shall

give an independent proof here, that does not require any further constructions; what is more, we have

in fact already established the essential part of the argument, in proving proposition 2.3.2. Our proof is

inspired by the one given in [Eriks] (although it must be admitted that by translating the reasoning using

tableau switching, it has become rather similar to the arguments contained in [Haim2]). The confluence

we wish to prove can be formulated as follows: given any T ∈ ST(λ/µ), all sequences of inward jeu de

taquin slides to fill up all squares of Y (µ) give the same standard Young tableau as result when applied

to T . Those sequences of slides are determined by the standard Young tableaux of shape µ, and the

statement means that these should all be dual equivalent (by the second interpretation of that term,

given after its definition). Therefore we state:

2.4.1. Theorem. For any λ ∈ P, all tableaux in ST(λ) are dual equivalent.

Proof. The proof is by induction on |λ|; the case |λ| = 0 is trivial (in fact all cases with |λ| ≤ 3 are

either trivial or already established). By the induction hypothesis and proposition 2.3.3, one has for any

corner s of Y (λ) dual equivalence among all members of the subset C(λ, s) of ST(λ) of tableaux whose

highest entry occupies the square s (as chains of partitions, these tableaux have in common a predecessor

of λ in (P,⊆)). It will then suffice to establish dual equivalence between a pair of elements chosen from

any two such subsets C(λ, p), C(λ, r); we assume that the diagonal of the corner p has smaller index

than that of r. The Young diagram Y (λ) \ {p, r} contains at least one corner q on a diagonal whose

index is between those of p and q: one can take for instance its unique corner in the row above p. Let

µ ∈ P be such that Y (µ) = Y (λ) \ {p, q, r}, and let S1, S2 ∈ ST(λ/µ) be the tableaux of respective

types cab and bac; these tableaux are dual equivalent by proposition 2.3.2. For any R ∈ ST(µ) one

has R|S1 ∈ C(λ, p) and R|S2 ∈ C(λ, r), and R|S1 and R|S2 are dual equivalent by proposition 2.3.3.

Remark. The statement of the theorem corresponds to a global form of confluence of jeu de taquin,

in the sense that any two sequences of jeu de taquin slides applied to T will eventually converge when

the normal form (Young tableau) is reached. The proof however shows that confluence can in fact be

obtained locally, namely if two different jeu de taquin slides are applied to T , then the resulting tableaux

can be made equal by applying at most two more slides to each of them: the dual equivalence of S1

and S2 in the proof means that successive slides into p, r, q have the same effect as those into r, p, q.

We defined two tableaux to be dual equivalent if their equality of shape is preserved under sequences

of outward slides, or equivalently if the two sequences of inward slides (applied to some tableau T )
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determined by them always have the same effect. One may ask whether this implies the same property

with “inward” and “outward” interchanged; indeed that is part of the requirement for dual equivalence

in its original definition in [Haim2]. To prove that this property follows from our definition (in fact it

is equivalent to it), we use an involutive poset anti-isomorphism of the sub-poset of the Young lattice

of partitions contained in some fixed (large) rectangular partition. Fix a partition ρ with n non-zero

parts, all equal to m; then this anti-isomorphism, which we shall denote by λ 7→ λ� for λ ⊆ ρ, is given

by λ�i = m − λn−1−i for i ∈ [n]. For any T ∈ ST(λ/µ) with λ ⊆ ρ, we also define T � ∈ ST(µ�/λ�)

by applying the anti-isomorphism to all partitions in the chain of T , and reversing their order. By a

similar operation applied to tableau switching families, it can be seen that X(S, T ) = (T ′, S′) implies

X(T �, S�) = (S′
�
, T ′
�
).

2.4.2. Proposition. Two tableaux S1, S2 of the same shape are dual equivalent if and only if for any

tableau T of appropriate shape, and with X(T, Si) = (S′i, T
′
i ) for i = 1, 2, one has T ′1 = T ′2.

Proof. Let us temporarily call the relation in the second clause of the proposition reverse dual

equivalence. Suppose first that S1 and S2 are reverse dual equivalent and of shape λ/µ. Let T ∈
ST(µ/(0)), and put X(T, Si) = (S′i, T

′) for i = 1, 2; then S′1 and S′2 are dual equivalent by theorem 2.4.1,

so S1 and S2 are also dual equivalent by the remark after definition 2.3.1. (In fact theorem 2.4.1 is

equivalent to the “if” part of the current proposition, since Young tableaux of equal shape are trivially

reverse dual equivalent.) Conversely, suppose that S1 and S2 are dual equivalent; then for any choice

of a rectangular partition ρ ⊇ λ, the tableaux S�1 and S�2 are reverse dual equivalent, whence (by what

we just proved) they are dual equivalent, and so S1 = S��1 and S2 = S��2 are reverse dual equivalent.

This proposition provides an effective test of dual equivalence. Given tableaux S1, S2 of equal shape,

one applies successive inward slides into the same squares to both tableaux; if at any moment their shapes

become different, then S1 and S2 are not dual equivalent, but if the tableaux become Young tableaux

without exhibiting shape difference, then one has established the second clause of the proposition, and

therefore dual equivalence of S1 and S2. For jeu de taquin equivalence one also has a test, due to

confluence: one reduces both tableaux to Young tableaux, which will be equal if and only if the original

tableaux are jeu de taquin equivalent.

2.4.3. Corollary. If S1, S2 are both dual equivalent and jeu de taquin equivalent, then S1 = S2.

Proof. Reducing S1 and S2 in parallel preserves shapes and eventually produces equal tableaux; reversing

the slides, one must have had S1 = S2 to begin with.

2.5. An alternative Littlewood-Richardson rule.

Let χ ∈ S; the fact that to each skew tableau T ∈ ST(χ) there is associated a unique Young tableau P

obtainable from it by jeu de taquin, allows us to subdivide ST(χ) according to the shape of this P . Define

ST(χ).P = {T ∈ ST(χ) | T . P } for any standard Young tableau P , and for ν ∈ P|χ| set ST(χ).ν =⋃
P∈ST(ν) ST(χ).P . The sets ST(χ).P are the fibres of the map ST(χ).ν → ST(ν) sending T 7→ P when

T . P . We show that these fibres all have the same number of elements, and that in fact there are

canonical bijections between them, so that ST(χ).ν is in natural bijection with the Cartesian product

of ST(ν) and any one such fibre.

2.5.1. Proposition. Let λ/µ ∈ S and ν ∈ P, and let C ∈ ST(ν) be fixed. Then there is a bijection

φ: ST(λ/µ).C × ST(ν) → ST(λ/µ).ν , that can be characterised by the conditions that φ(L,P ) . P and

that φ(L,P ) is dual equivalent to L.

Proof. We can construct φ(L,P ), which is then uniquely determined due to corollary 2.4.3, as follows.

Choose any Q ∈ ST(µ), then X(Q,L) = (C, S) for some S ∈ ST(λ/ν); then compute X(P, S),

which because of S . Q will be of the form (Q,T ) with T ∈ ST(χ).P . From X(Q,L) = (C, S) and

X(Q,T ) = (P, S) with C,P ∈ ST(ν), we get dual equivalence of L and T ; we set φ(L,P ) = T . Since

(P, S, L) can be reconstructed from (T,Q,C), the correspondence φ is bijective.
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As an example of this construction, let

C =
0 1 2 7 11
3 5 9
4 6 10
8 12

, L =

2 7 11
5 9

0 1 10
3 12

4 6
8

, P =
0 2 4 5 9
1 3 7
6 1012
8 11

;

choosing Q =
0 1 5 8
2 4 7
3
6

one gets S =

1 8
2 5
7

4
0 6
3

, and X(P, S) = (Q,T ), where

T = φ(L,P ) =

2 5 9
4 7

0 3 10
1 12

6 11
8

.

The reader may check that the same tableau T is obtained for other choices of Q.

The above proposition can be generalised to skew semistandard tableaux, using proposition 2.2.3.

It suffices to replace ST(ν) and ST(λ/µ) respectively by SST(ν, n) and SST(χ, n), and ST(λ/µ).ν by

SST(χ, n).ν , which is defined as
⋃
C∈SST(ν,n) SST(χ).C where SST(χ).C = {L ∈ SST(χ, n) | L . C }.

We obtain the following corollary, either by applying proposition 2.5.1, or by reusing its proof almost

literally.

2.5.2. Corollary. Let χ ∈ S, ν ∈ P, n ∈ N, and fix C ∈ SST(ν, n). Then there is a bijection

φ: SST(χ).C × SST(ν, n) → SST(χ, n).ν , that can be characterised by the conditions that φ(L,P ) . P

and that φ(L,P ) is dual equivalent to L.

If one combines the inverses of such bijections φ for all ν ∈ P|χ|,n, one obtains a bijection R′ defined

on
⋃
ν∈P|χ|,n SST(χ, n).ν = SST(χ, n), whose codomain strongly resembles that specified for Robinson’s

bijection R at the right hand side of (9); the difference is that, in each component of the union over

ν ∈ P|χ|,n, the factor LR(χ, ν) is replaced by SST(χ).C , for some C ∈ SST(ν, n) chosen separately for

every ν. Writing R′(T ) = (R′0(T ),R′1(T )), the map R′1 preserves weight (since T . R′1(T )); therefore

the bijection R′ gives us an alternative expression for the value of Littlewood-Richardson coefficients:

2.5.3. Corollary. If the skew shape χ represents λ ∗ µ, then the Littlewood-Richardson coefficient cνλ,µ
equals # SST(χ).C for any C ∈ SST(ν). More generally, # SST(χ).C = cνχ for any skew shape χ.

Although this version of the Littlewood-Richardson rule has the advantage of already being proved,

it is of little practical use in its present form, since the sets SST(χ).C cannot be enumerated in any useful

manner. However, we shall in the next section prove the identity

SST(χ).1ν = LR(χ, ν); (11)

it follows that for the special choice C = 1ν ∈ SST(ν, n) for all ν, the bijection R′ exactly matches the

specification of Robinson’s bijection, providing a proof of the Littlewood-Richardson rule. Indeed, we shall

define R so that it coincides with this specialisation of R′. The remark we made following definition 2.2.4

implies (11), so we could complete our proof of the Littlewood-Richardson rule by proving that remark.

Using coplactic operations, as we shall do, is certainly not the simplest way to prove (11), but it provides

a better insight into Robinson’s bijection, and in particular it gives a simpler description of R0 than

the one that can be extracted from what has been presented so far. It will also lead to a proof of the

Littlewood-Richardson rule that does not depend on any of the non-trivial results derived in this section.

By proposition 1.4.5, (11) also implies # SST(χ).1ν = # SST(ν/µ).1λ when χ represents λ ∗ µ, and

hence cνλ,µ = cλν/µ. On the other hand cλν/µ = cµν/λ can be obtained without using (11): the relation

X(1µ, T ) = (1λ, T
∗) defines a bijection between tableaux T ∈ SST(ν/µ).1λ and T ∗ ∈ SST(ν/λ).1µ (this
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can be generalised by replacing 1µ and 1λ by other fixed tableaux of the same shape). For instance, here

is the computation for the tableau L∗ corresponding to the Littlewood-Richardson tableau L of (7).

L =

0 0

0 1 1

0 1 2 2

0 1 3

1 4

,

0 0 0 0 0 0

1 1 0 1 1

2 0 1 2 2

0 1 3

2 4

X←→

0 0 0 0 0 0

1 1 1 1 0

2 2 2 0 1

3 0 2

4 1

, L∗ =

0

0

0 1

0 2

1

(12)

The identity cλν/µ = cµν/λ is of course related to the symmetry cνλ,µ = cνµ,λ that is obvious from the

definition (2). If we assume (11), we can derive a bijection corresponding to that symmetry. Write

LR(λ ∗ µ, ν) for LR(χ, ν) when χ represents λ ∗ µ, and let L ∈ LR(λ ∗ µ, ν) be given. First determine

L̄λ ∈ LR(ν/µ, λ) corresponding to L by proposition 1.4.5 (the companion tableau of the subtableau Lλ
of L), then compute L̄∗λ ∈ LR(ν/λ, µ) as above by X(1µ, L̄λ) = (1λ, L̄

∗
λ), and finally apply the bijection

corresponding to proposition 1.4.5 in the opposite direction to L̄∗λ so as to obtain a tableau in LR(µ∗λ, ν).

It does not appear that this somewhat complicated process can be simplified.

§3. Coplactic operations.

In this section we shall introduce another kind of operations on skew semistandard tableaux, which we

shall call coplactic operations. Unlike jeu de taquin, these transformations do not change the shape of

a tableau, but rather its weight, by changing the value of one of the entries. The basic definitions can

be formulated most easily in terms of finite words over the alphabet [n]. In the application to tableaux,

these words will be the ones obtained by listing the entries of skew semistandard tableaux using a valid

reading order as described in §1.5; this means in particular that notions of “left” and “right” within

words will (unfortunately) get a more or less opposite interpretation within tableaux.

3.1. Coplactic operations on words.

We first fix some terminology pertaining to words. A word over a set A (called the alphabet) is a finite

(possibly empty) sequence of elements of A, arranged from left to right; the elements of the sequence

forming a word w are called the letters of w. The set of all words of length l over A is denoted by Al,

and A∗ =
⋃
l∈NAl. The concatenation of two words u, v ∈ A∗ will be denoted by uv (the sequence u of

letters, followed by the sequence v); this defines an associative product on A∗. Whenever a word w can

be written as uv, the word u is called a prefix of w, and v a suffix of w; a subword of w is any word that

can be obtained by removing from w a (possibly empty) prefix and a suffix.

For words w ∈ [n]∗ we define the weight wtw ∈ Nn in the same way as for semistandard tableaux,

i.e., (wtw)i counts the number of letters i in w. A word w ∈ [n]∗ will be called dominant for i ∈ [n− 1]

if every prefix u of w satisfies (wtu)i ≥ (wtu)i+1, and it will be called anti-dominant for i if every

suffix v of w satisfies (wt v)i ≤ (wt v)i+1. If w is both dominant and anti-dominant for i, it will be

called neutral for i. If w is either dominant or anti-dominant for i, then it is neutral for i if and only if

(wtw)i = (wtw)i+1. In a word w that is neutral for i there is a matching between letters i and letters i+1

to their right, like properly matched left and right parentheses (the words in {i, i+ 1}∗ that are neutral

for i form a so-called Dyck language). Removing from any word a subword that is neutral for i does

not affect whether it is dominant, anti-dominant, or neutral for i. A word that contains no non-empty

subwords that are neutral for i is of the form (i + 1)r is with r, s ∈ N, where exponentiation signifies

repetition of the same letter.

A word in [n]∗ that is simultaneously dominant for all i ∈ [n − 1] will be simply called dominant,

or in older terminology a lattice permutation. Equivalently, a word is dominant if the weight of every

one of its prefixes is a partition (of the length of the prefix into n parts). Observe the similarity with

0-dominance for semistandard tableaux, as characterised in proposition 1.4.3; this is what motivated our

choice of terminology. The sequence of weights of the successive prefixes of a dominant word w forms a

standard Young tableau, from which w can be readily reconstructed. For later reference we state this as

follows:
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3.1.1. Proposition. The set of dominant words w ∈ [n]
d

of weight λ ∈ Pd,n is in bijection with

ST(λ), associating to w to the sequence of weights of its prefixes.

3.1.2. Definition. A coplactic operation in [n]∗ is a transition between words w = uiv and w′ =

u(i + 1)v, where i ∈ [n − 1], u, v ∈ [n]∗, and u is anti-dominant for i while v is dominant for i. In this

case we shall write w = ei(w
′) and w′ = fi(w).

For instance, in the following word over the alphabet [6], decrementing by 1 any one of the numbers

with an underline, or incrementing by 1 any one of the numbers with an overline, constitutes a coplactic

operation, and no other coplactic operations are possible; the word is dominant for 1 and neutral for 2.

4 0 1 5 2 1 3 5 0 1 4 2 0 0 1 2 3 3 4 (13)

In the definition, the letter i in w that is changed to i+1 in w′ is not contained in any subword u0iv0 of w

that is anti-dominant for i, for v0 would then have strictly more letters i+ 1 than letters i, contradicting

the dominance for i of v; similarly the indicated letter i + 1 in w′ is not contained in any subword that

is dominant for i. In particular the changing letters are not contained in any subword that is neutral

for i, and u is the longest prefix of w that is anti-dominant for i, while v is the longest suffix of w′ that

is dominant for i. Hence the expressions fi(w) and ei(w
′), when defined, are unambiguous.

3.1.3. Proposition. The expression ei(w) is defined unless w is dominant for i, and fi(w) is defined

unless w is anti-dominant for i.

Proof. We shall prove the latter statement, the proof of former being analogous. Let u be the longest

prefix of w that is anti-dominant for i; clearly fi(w) cannot be defined if u = w. Otherwise w = uiv for

some v, and we show by induction on its length that v is dominant for i, which will prove the proposition.

The cases where v is empty or ends with a letter other than i+ 1 are trivial, so assume v = v′(i+ 1) and

suppose v is not dominant for i while (by induction) v′ is. Then v′ has as many letters i as letters i+1, and

is therefore neutral for i, so that w = uiv′(i+1) is anti-dominant for i since ui(i+1) is; a contradiction.

If w = ei(w
′), then wtw > wtw′ (for the ordering of §1); therefore the ei are called raising op-

erations, and the fi are called lowering operations. Starting with any w ∈ [n]∗ one can iterate ap-

plication of a fixed ei until, after a finite number of iterations, w is transformed into a word that is

dominant for i. More generally any sequence of applications of operations ei, where i is allowed to

vary, must eventually terminate, producing a dominant word. For instance, for the word in (13), if

we choose at each step to apply the operation ei with minimal possible i, the sequence of operations

applied is e0, e3, e2, e1, e0, e4, e3, e2, e1, e4, e3, e2, e1, which respectively decrease the letters at positions

5, 0, 0, 0, 0, 7, 10, 10, 11, 3, 3, 3, 4 from the left, leading finally to the dominant word 0 0 1 2 1 0 3 4 0 1 2 1 0

0 1 2 3 3 4. Thus the raising operations ei define a rewrite system on [n]∗, whose normal forms are the

dominant words. We shall show below that this rewrite system is confluent; for instance the dominant

word just obtained from the word in (13) can also be obtained by always applying the ei with maximal

possible i, which leads to the sequence e4, e3, e3, e4, e2, e2, e3, e1, e2, e0, e1, e0, e1, respectively affecting

letters at positions 7, 10, 0, 3, 10, 0, 3, 0, 3, 5, 11, 0, 4.

The coplactic operations define a labelled directed graph on the set [n]∗, with an edge labelled i

going from w to w′ whenever fi(w) = w′; we shall call this the coplactic graph on [n]∗. For each

w ∈ [n]∗, we shall call the connected component of the coplactic graph on [n]∗ containing w the coplactic

graph of w; we consider this to be a rooted graph, with as root the element w itself. For n = 2, these

coplactic graphs are linear with a dominant word at one end and an anti-dominant word at the other

end; distinct raising operations do not commute however, so that for n > 2 the coplactic graph associated

to w can contain other words with the same weight as w (for instance the coplactic graph of 1 0 2 also

contains 2 0 1). Coplactic graphs are isomorphic to the crystal graphs for irreducible integrable Uq(gln)-

modules of [KaNa]; this places their properties in a broader perspective. Their structure is intricate,

and not easy to describe in an independent way; however, as we shall see, it occurs frequently that

distinct words have isomorphic coplactic graphs (for instance the coplactic graphs of 1 0 2 and 0 2 1 are
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isomorphic). The coplactic graph of the word w in (13) for n = 6 contains 53460 words, 120 of which

have the same weight as w (for instance 2 0 1 5 3 1 4 5 0 1 3 2 0 0 1 2 4 3 4); we shall not attempt to depict this

graph. However, we encourage the reader to draw some small coplactic graphs, e.g., for the word 0 1 0 1

and n = 4 (cf. [LeTh, Figure 2]).

3.2. Coplactic operations on tableaux.

As we mentioned, our interest in coplactic operations is in applying them to tableaux rather than to

words. For the purpose of defining coplactic operations, the entries of a tableau will be considered as

letters of a word that have been mapped in some order onto the squares of a skew diagram. In view of

the similarity between dominance of words and 0-dominance of tableaux, it should come as no surprise

that the order in which the entries of a tableau are strung together into a word is a valid reading order

as discussed in §1.5. The following properties however, which we shall prove below, are quite remarkable.

When coplactic operations are applied to the word read off a tableau, modifying its entries in place, the

tableau conditions are preserved; this regardless of which valid reading order is used, and despite the

loss of information about rows and columns of the skew diagram caused by the reading process. In fact

the changes to the entries caused by the coplactic operations are themselves independent of that order,

i.e., the same entry is affected, at whatever place in the word the reading order places it. For instance,

here is a tableau with the coplactic operations that can be applied to it, labelled as in (13), and two of

its similarly labelled reading words (for the Semitic and Kanji reading order, respectively) that could be

used to determine those possible coplactic operations.

0 1

0 1 1 3

0 2 2 3

1 4 4 5

3 5

1 0 3 1 1 0 3 2 2 0 5 4 4 1 5 3 1 3 0 1 3 5 1 2 4 0 2 4 5 0 1 3

We shall now give a more formal definition. A valid reading order for χ ∈ S is a total ordering ‘≤r’
on Y (χ), such that (i, j) ≤r (i′, j′) whenever i ≤ i′ and j ≥ j′. A corresponding map wr: SST(χ, n)→ [n]∗

is defined by wr(T ) = Ts0 · · ·Tsk , where Y (χ) = {s0, . . . , sk} with s0 <r · · · <r sk; in other words, wr
forms a list of all entries of T , in increasing order for ‘≤r’ of their squares. Now let c be a coplactic

operation that can be applied to wr(T ), say wr(T ) = uiv and c(wr(T )) = ui′v with i, i′ ∈ [n] and i 6= i′.

Then if the length of u is l, the square sl in above enumeration is called the variable square for the

application of c to T (it contains the copy of the letter i that is changed by c). If replacing i in square sl
of T by i′ results in a tableau U ∈ SST(χ, n), we define U = c(T,≤r), so that wr(c(T,≤r)) = c(wr(T )).

3.2.1. Proposition. Let χ ∈ S, let T ∈ SST(χ, n) and let c be a coplactic operation ei or fi with

i ∈ [n−1]. Then for any valid reading order ‘≤r’, the tableau c(T,≤r) is defined if and only if c(wr(T )) is;

moreover, this condition and (when it holds) the value of c(T,≤r) do not depend on ‘≤r’.

Proof. We shall use a process of reduction: T ∈ SST(χ, n) is simplified by successively removing certain

sets of squares from Y (χ), restricting T and ‘≤r’ to the remainder. At each step the change to wr(T ) will

be the removal of a subword that is neutral for i, so that neither the condition whether or not c(wr(T ))

is defined, nor the variable square, is affected. The reduction steps are of two types. The first type is the

removal of squares whose entries are not i or i+1, as the corresponding subwords of wr(T ) (of length 1) are

neutral for i; this reduces us to the case that T has entries i and i+1 only. In that case the second type of

reduction applies, which removes a maximal rectangle within Y (χ) consisting of two rows of squares (since

the columns of Y (χ) now have at most 2 squares, maximality means the rectangle cannot be extended

into the columns to its left or right). One easily checks that the letters of wr(T ) corresponding to such

a rectangle form a subword that is neutral for i. When no further reduction of this type is possible, T is

reduced to a tableau with at most one square in any column, and regardless of the original reading order,

wr(T ) lists their entries from the rightmost column to the leftmost one. Assuming now that c(wr(T ))

is defined, it follows from the definition of coplactic operations for words that the variable square does
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not have a left neighbour with entry i+ 1, nor a right neighbour with entry i; this shows in the reduced

case that changing the entry of the variable square does not violate weak increase along rows. Neither

is it possible that such a neighbouring entry of the variable square was removed by the second type of

reduction (the variable square itself would then have to have been in a column of length 2, which it was

not), showing that weak increase along rows is preserved in the unreduced case as well; strict increase

down columns is preserved since there are no other entries i or i+1 in the column of the variable square.

3.2.2. Definition. On SST(χ, n) the coplactic operations ei and fi (for i < n) are (partially) defined

by ei(T ) = ei(T,≤r) and fi(T ) = fi(T,≤r) for an arbitrary valid reading order ‘≤r’; this is taken to

mean also that the left hand sides are undefined when the corresponding right hand sides are.

We call T ∈ SST(χ) dominant if wr(T ) is dominant for any (and hence for every) valid reading order r;

it means ei(T ) is undefined for all i ∈ N. From proposition 1.4.3 we get the following characterisation.

3.2.3. Corollary. For any χ ∈ S, the subset of dominant elements of SST(χ) is equal to LR(χ).

3.3. The main theorem: commutation.

As a result of proposition 3.2.1, one obtains many instances of distinct words with isomorphic coplactic

graphs, namely words obtained as wr(T ) for fixed T and different reading orders ‘≤r’. In fact we shall

presently find even more instances than can be found in this manner. The situation resembles to that of

jeu de taquin, where we found remarkably many cases of dual equivalent skew semistandard tableaux. We

shall now give a theorem that explains both these phenomena, and at the same time essentially proves

the Littlewood-Richardson rule. This theorem, which is the only one in our paper with a somewhat

technical proof, simply states that jeu de taquin commutes with coplactic operations. This implies that

coplactic operations transform tableaux into dual equivalent ones, and that words obtained from jeu de

taquin equivalent tableaux using any reading order always have isomorphic coplactic graphs.

3.3.1. Theorem. Coplactic operations ei and fi on tableaux commute with jeu de taquin slides in the

following sense. If S ∈ SST(µ/ν), T ∈ SST(λ/µ), and X(S, T ) = (T ′, S′), then ei(T ) is defined if and

only if ei(T
′) is, and if so, one has X(S, ei(T )) = (ei(T

′), S′); the same holds when ei is replaced by fi.

In the course of the proof we shall need to draw some specific configurations that may occur within

the tableaux. These will involve entries i and i+1 only; in order to fit them into the squares, we subtract i

from each, representing them respectively as 0 and 1 (one might also say the drawings assume i = 0).

Proof. Since the standardisation of T can be written as U |V |W where U , V , W are the standardisations

of the subtableaux of T of entries less than i, in {i, i + 1}, and greater than i + 1, respectively, we can

reduce by proposition 2.2.5 to the case that T has entries i and i+ 1 only; we may also assume |µ/ν| = 1.

Since T0 = ei(T1) means the same as fi(T0) = T1, it suffices to consider the operations ei. We may use

any valid reading order to determine coplactic operations on tableaux; it will be convenient to use the

Kanji reading order, which we shall denote by ≤K. The only differences between wK(T ) and wK(T ′)

are due to transitions 0
1 1

→ 0
1 1

and 0 0
1
→ 0 0

1
during the slide T . T ′; the effect of these transitions

on wK(T ) amounts to interchanging one letter with a word i(i + 1). Since that word is neutral for i,

this does not affect the dominance or anti-dominance for i of any subword containing the change. In

particular wK(T ′) is dominant for i if and only if wK(T ) is, whence ei(T ) is defined if and only if ei(T
′) is;

we assume henceforth that this is the case. Let v be the variable square for the application of ei to T ,

and v′ the variable square for the application of ei to T ′. We can find v′ from v by tracing for each

intermediate “tableau with empty square” T̃ during the slide T . T ′ which of its entries i+1 corresponds

to the letter affected by ei in wK(T̃ ) (like before, we shall label this entry in drawings by underlining it).

This amounts to moving along with that entry if it slides into another square, and switching to the entry

to its right if an entry i moves into its present column, giving rise to a transition 0
1 1
→ 0

1 1
.

We now distinguish two cases, depending on whether or not the path of the inward slide applied

to T (i.e., the set of squares whose entries move) is the same as for the slide applied to ei(T ). Suppose

first that the paths are the same, then the entry of v makes the same move, if any, during the two slides;
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since this entry is i + 1 in one case and i in the other, it must be unique in its column both before and

after the slide. By the above description of v′, we see that v′ coincides with final position of the entry

of v; this implies the theorem for this first case.

Suppose next that the paths of the two slides differ, which must be caused by the change of the

entry of v. This means that v occurs in exactly one of these paths; since the rule for an inward jeu

de taquin slide is to select the smallest candidate entry to move, v must be in the path of the slide

applied to ei(T ), where it has entry i rather than i + 1. We can see as follows that this move of

the entry i of v in ei(T ) cannot be to the left: this would mean that in the slide T . T ′, where the

entry i + 1 of v does not move, the square to its left is filled by another entry i + 1 sliding up; the

path of that slide therefore cannot involve the square above v, whence our earlier reasoning gives v′ = v,

which is absurd since ei(T
′) must have weakly increasing rows. Therefore the move of the entry i of v

in ei(T ) must be upwards, and it is the first move of the slide. It is a transition 0
0 1

→ 0 0
1

whereas

in T we have 0
1 1
→ 0

1 1
(the presence of the entry at the bottom right follows from the fact that v is

the variable square: the Kanji reading wK(R) of the subtableau R of T consisting of the columns to

the right of v is anti-dominant for i). The latter transition may be followed by a number of similar

transitions further to the right, where each time the anti-dominance of wK(R) guarantees the presence

of the entry at the bottom right; eventually they must be followed by a final transition 0
1 1

→ 0 1
1

.

The relevant part of the slide for T looks like 0 0 0
1 1 1 1

. 0 0 0 1
1 1 1

, and the location of the underline

after the slide indicates the variable square v′ in T ′. The corresponding part of the slide for ei(T ) is
0 0 0

0 1 1 1
. 0 0 0 0

1 1 1
, whose result matches ei(T

′); this proves the theorem for this second and final case.

Figure 1 illustrates the commutation of jeu de taquin and coplactic operations. In this example the

operation ei with smallest possible i is always chosen; several of them have been combined at each step, to

prevent the display from getting excessively large. The reader is urged to study the transitions carefully.

3.3.2. Corollary. Equation (11) holds, which establishes the validity of the Littlewood-Richardson rule.

Proof. Using corollary 3.2.3, theorem 3.3.1 implies that jeu de taquin preserves the property of being a

Littlewood-Richardson tableau. For L ∈ SST(χ) there exists a tableau of partition shape P ∈ SST(ν/(0))

with L . P ; then P is a Littlewood-Richardson tableau if and only if P = 1ν , in which case ν = wtL.

Note that we did not use the commutation statement of theorem 3.3.1, just the (easier) statement

about when ei(T ) is defined. Neither did we use confluence of jeu de taquin here, although it was used

to obtain corollary 2.5.3. But in fact theorem 3.3.1 independently proves this confluence, and more.

3.3.3. Corollary. On the set of all skew semistandard tableaux, the two rewrite systems defined by

inward jeu de taquin slides, respectively by the raising operations ei, are both confluent (their normal

forms are the semistandard Young tableaux, and the Littlewood-Richardson tableaux, respectively).

Moreover the two normal forms of a skew semistandard tableau T uniquely determine T .

Proof. Since the two rewrite systems commute in the precise sense of theorem 3.3.1, the set of normal

forms for one system is closed under the rewrite rules of the other system. Confluence of that rewrite

system on this set of normal forms is clear, since the only tableaux that are normal forms for both systems

simultaneously are the tableaux 1λ for λ ∈ P, and for a tableau that is a normal form for one of the

systems the pertinent value of λ can be directly read off as the shape (in the case of semistandard Young

tableaux) respectively as the weight (in the case of Littlewood-Richardson tableaux).

Now let T be any skew semistandard tableau, let P be a tableau of partition shape obtained from T

by a sequence of inward jeu de taquin slides, and let P̃ designate the sequence of shapes of the intermediate

tableaux. Similarly let L be a Littlewood-Richardson tableau obtained from T by applying a sequence L̃

of raising operations. As normal forms for one system, P and L each have a unique normal form for the

other system. By theorem 3.3.1, the normal form of P for raising operations can be obtained by applying

the sequence L̃ of such operations, while the normal form of L for jeu de taquin can be obtained by

applying a sequence of slides with P̃ as sequence of intermediate shapes; moreover the two normal forms

are the same tableau 1λ (where P ∈ SST(λ/(0)) and wtL = λ). Now P can be reconstructed from 1λ
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Figure 1. Commutation of jeu de taquin (right to left) and raising operations (upwards).

Raising operations are grouped: e0, e0, e1; e2, e1, e2, e1; e3, e2, e3, e2; e4, e4, e3, e2.

by reversing the the raising operations of L̃, and is therefore independent of the sequence P̃ used to

obtain it from T ; similarly L can be reconstructed using P̃ , and therefore independent of L̃. Thus both

rewrite systems are confluent. If L and P are given, then T can be reconstructed by a similar process:

for instance, a sequence P̃ of shapes can be found by reducing L by inward jeu de taquin slides into 1λ,

and since the latter is also obtainable from P by raising operations, a sequence of outward jeu de taquin

slides can be applied to P involving the shapes of P̃ in reverse order, which produces T as result.

It may be noted that parts of the argument above could have been formulated in more concrete terms,

e.g., by using a skew standard tableau to encode the information of P̃ and using tableau switching; we

have not done this in order to stress the conceptual simplicity of the argument, its symmetry with respect

to the two rewrite systems, and the fact that no detailed knowledge about these systems is used. On

the other hand the computation of T from L and P above can easily be seen to be equivalent to that

of φ(L,P ) in corollary 2.5.2, so that the following defines a specialisation of R′, as claimed at the end

of §2.

3.3.4. Corollary. For χ ∈ S and n ∈ N, Robinson’s bijectionR (i.e., one satisfying the specification (9))

can be defined by R(T ) = (R0(T ),R1(T )) for T ∈ SST(χ, n), where R0(T ) ∈ LR(χ, ν) is the normal

form of T for the rewrite system of raising operations, and the R1(T ) ∈ SST(ν, n) is the normal form

of T for the rewrite system of inward jeu de taquin slides.

3.4. Jeu de taquin on companion tableaux.

Having completed our discussion of the Littlewood-Richardson rule proper, it is worth while to point
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3.4 Jeu de taquin on companion tableaux

out a remarkable connection between coplactic operations and jeu de taquin performed on companion

tableaux. Note that we have already found, in corollary 3.2.3, that T has a companion tableau that

is a normal form for jeu de taquin (i.e., T is a Littlewood-Richardson tableau) if and only if T itself

is a normal form for raising operations; the connection we shall establish generalises this. It is closely

related to the theory of pictures, where instead of coplactic operations one has a second form of jeu de

taquin, with a similar commutation theorem [vLee2, theorem 5.3.1]. The symmetry exhibited by this

connection has some important implications, which we shall only indicate briefly here. Firstly, it implies

the fundamental symmetry of the Robinson-Schensted correspondence (see for instance [vLee1, 3.2]),

which is more manifest for Schensted’s formulation of the correspondence [Sche] than for Robinson’s

bijection; however, pictures clearly exhibit the link between these formulations [vLee2, theorem 5.2.3].

Secondly, the connection clarifies the bijection corresponding to cνλ,µ = cνµ,λ: as remarked at the end of §1,

this bijection involves tableau switching performed on a companion tableau of (part of) the Littlewood-

Richardson tableau. A detailed discussion of that bijection, and a generalisation, can be found in [vLee4].

Our starting point is proposition 3.1.1. It gives an interpretation of standard Young tableaux in

terms of words, but we shall consider more generally skew standard tableaux. To that end we extend the

notion of dominance for words, in analogy to that for tableaux, to κ-dominance: a word w ∈ [n]∗ will be

called κ-dominant, where κ ∈ Pd,n for some d, if pw is dominant for some dominant word p of weight κ

(this clearly does not depend on the choice of p). Now proposition 1.4.3 can be interpreted as saying that

a tableau T is κ-dominant if and only if wS(T ) is κ-dominant.

Proposition 3.1.1 now generalises as follows: for any ν ⊇ κ, the κ-dominant words of weight ν − κ
are in bijection with ST(ν/κ). To see this one chooses some fixed dominant word p of weight κ, and

associates to any κ-dominant word w the skew standard tableau obtained by applying proposition 3.1.1

to pw, and extracting from the resulting chain of partitions T ∈ ST(ν) the subchain from κ to ν (again

this subchain does not depend on the choice of p).

3.4.1. Proposition. Let w ∈ [n]∗ be a κ-dominant word, with corresponding tableau S ∈ ST(ν/κ); let

S′ ∈ ST(ν′/κ′) be obtained from S by an inward jeu de taquin slide into a square in row k, ending in

row l. Then the sequence of words w = wk, wk+1, . . . , wl given by wi+1 = ei(wi) for k ≤ i < l is well

defined, and wl corresponds to S′; moreover wl is the first word in the sequence that is κ′-dominant.

Proof. Fix a dominant word p of weight κ. When the prefixes of pw are listed in increasing order, adding

a letter i of w will increase part i of the partition in the chain S that is the weight of the prefix, and

therefore add a square in row i of its diagram. To make more explicit the correspondence of the letter to

that square, we attach to each letter a subscript that we shall call its “ordinate”, describing the column

of the square: the ordinate of the leftmost occurrence of i in w is κi, and for the remaining occurrences

of i the ordinates increase from left to right by unit steps. Note that it is also true that among the letters

with fixed ordinate j, the value of the letters increases from left to right by unit steps. Let w̃ be the word

obtained by so augmenting the letters of w with ordinates.

The slide S . S′ can be described by tableau switching: X(E,S) = (S′, E′), where E is the unique

element of ST(κ/κ′) (i.e., the chain (κ′ ⊂ κ); the only square (k, κ′k) of E is the initial position of the

empty square), and E′ ∈ ST(ν/ν′) is similarly unique (its square (l, ν′l) is the final position of the empty

square). Since each letter ij of w̃ describes the square (i, j) added at the corresponding place in the

chain S, we can mirror this tableau switching computation by operations on w̃. We add a (subscripted)

letter to w̃, designating the empty square, which is distinguished from the other letters; we shall indicate

it by a caret. Initially this is k̂κ′
k
, added at the left end of w̃. We successively move this distinguished

letter to the right through the word, making adjustments according to the rules for tableau switching:

when îj is moved across a letter ij+1 or (i + 1)j , it assumes the value and ordinate of that letter, while

that letter becomes ij after the switch (so îj ij+1 → ij îj+1 and îj (i + 1)j → ij ̂(i+ 1)j); otherwise the

letters are simply interchanged, preserving their own value and ordinate (îj ab → ab îj).

We shall show that if the successive intermediate words obtained from k̂κ′
k
w̃ are “stripped”, by which

we mean removing the distinguished letter and all ordinates, then we obtain a sequence of words over

[n] that reduces to wk, . . . , wl by removing repeated occurrences of words. Switches îj ab → ab îj and
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îj ij+1 → ij îj+1 clearly leave the stripped word unchanged. What we must show, is that in the remaining

case, which with the full context of a prefix ũ and suffix ṽ takes the form ũ îj (i+1)j ṽ → ũ ij ̂(i+ 1)j ṽ, the

stripped words undergo a coplactic operation ei; this requires that the word u obtained by stripping ũ be

anti-dominant for i, and that the word v obtained by stripping ṽ be dominant for i. With the distinguished

letter taken into account, all switches preserve the properties mentioned above of “increase by unit steps”.

Hence in ũ, any letter ij′ has a letter (i + 1)j′ somewhere to its right (and one has j′ < j), whence u is

anti-dominant for i; similarly v is dominant for i because any letter (i + 1)j′ in ṽ has a letter ij′ to its

left.

What remains is to prove is that the stripped word is not κ′-dominant until the last switch of

the form îj (i + 1)j → ij ̂(i+ 1)j . The argument given that such switches affect the stripped word by

application of ei remains valid when a dominant word p′ of weight κ′, properly augmented, is prepended

to k̂κ′
k
w̃ and words obtained from it (now among letters with any fixed value, the ordinates start

with 0 at the left). So p′wi+1 = ei(p
′wi), showing that wi is not κ′-dominant.

We now pass from κ-dominant words to κ-dominant tableaux. If a κ-dominant tableau T has

T̄ ∈ SST(ν/κ) as companion tableau, then it follows from the definitions that the element of ST(ν/κ)

corresponding to the κ-dominant word wST of weight ν − κ is equal to the standardisation of T̄ : the

entries in any row i of T , traversed in the Semitic reading order, are the row numbers of the squares with

entry i in T̄ , listed from left to right. Applying this to the proposition, we obtain:

3.4.2. Theorem. Let T̄ ∈ SST(ν/κ) be a companion tableau of T ∈ SST(χ), and let T̄ ′ ∈ SST(ν′/κ′)

be obtained from T̄ by an inward jeu de taquin slide into a square in row k, ending in row l. Then the

sequence T = Tk, Tk+1, . . . , Tl ∈ SST(χ) given by Ti+1 = ei(Ti) for k ≤ i < l is well defined, and T̄ ′

is a companion tableau of Tl; moreover Tl is the first tableau in the sequence that is κ′-dominant.

As an example, we apply this construction to the companion tableaux T, T̄ of (5), and k = 0. The

word w = wS(T ) = 1 0 3 1 1 0 3 2 2 0 5 4 4 1 5 3, gets augmented as w̃ = 14 06 32 15 16 07 33 24 25 08 50 41 42
17 51 34, since κ = (6, 4, 4, 2, 1, 0). To simulate the slide into the square (0, 5), we prepend 0̂5 to w̃, and

then move this distinguished letter across the successive letters of w̃. In the process, it exchanges its

contents successively with 06, 16, and 17, with as final result the augmented word 14 05 32 15 06 07 33
24 25 08 50 41 42 16 51 341̂7. After stripping the words, we get the relation e0(1 0 3 1 1 0 3 2 2 0 5 4 4 1 5 3) =

1 0 3 1 0 0 3 2 2 0 5 4 4 1 5 3. The pair of companion tableaux is transformed into the following one:

e0(T ) =

0 1

0 0 1 3

0 2 2 3

1 4 4 5

3 5

, T̄ ′ =

0 1 1 2

0 1 3

2 2

1 2 4

3 3

3 4

; (14)

this shows that e0(T ) is κ′-dominant for κ′ = (5, 4, 4, 2, 1, 0). A further slide into the square (0, 4)

causes 0̂4 to traverse the augmented word, exchanging its contents with successively 14, 15, and 25,

and transforming the word into 04 05 32 14 06 07 33 24 15 08 50 41 42 16 51 34. On the stripped word we have

application of e1 ◦ e0, and the resulting pair of companion tableaux is

(e1 ◦ e0)(e0(T )) =

0 0

0 0 1 3

0 1 2 3

1 4 4 5

3 5

, T̄ ′′ =

0 0 1 1 2

1 2 3

2

1 2 4

3 3

3 4

. (15)

23



3.4 Jeu de taquin on companion tableaux

Writing the letters of the augmented words back into T , one finds the transitions

06 14
07 16 15 32

08 25 24 33
17 42 41 50
34 51

e0−→

05 14
07 06 15 32

08 25 24 33
16 42 41 50
34 51

e1 ◦ e0−→

05 04
07 06 14 32

08 15 24 33
16 42 41 50
34 51

. (16)

This last representation provides another perspective to proposition 3.2.1. First observe that the

ordinates of the entries of T with a fixed value i increase from right to left by unit steps, starting with the

ordinate κi. It follows that reading the augmented entries according to any valid reading order ‘≤r’ will

produce a properly augmented word; stated differently, augmenting (for κ) any wr(T ) and then writing

the augmented letters back into T along the reading order ‘≤r’ always produces the same augmented

tableau. Also, the values of the entries of the augmented tableau T with a fixed ordinate j increase from

top to bottom, by what was said in §1.5. The fact that during the first transition 0̂5 exchanges its contents

with 06 rather than with 15 is due to the fact that 06 precedes 15 in (the augmentation of) wS(T ), and

similarly the exchange with 16 was made because 16 precedes 07 (for the final exchange with 17, there is

no alternative). It can be verified that these ordering relations are unchanged when an augmentation of

any reading wr(T ) is used instead of that of wS(T ). This is due to the placement of these entries in the

augmented tableau T , and the same is true for the relevant pairs of entries (14, 05), (15, 24) and (25, 16)

in the middle augmented tableau of (16). The fairly easily proved fact that this is always the case (cf.

[vLee2, lemma 5.1.2]) provides an alternative proof of proposition 3.2.1.

Using theorem 3.4.2, one can express coplactic operations on T in terms of jeu de taquin slides on

a suitable companion tableau of T . To compute ek(T ) (when defined), it suffices to find a companion

tableau T̄ for which one has l = k + 1 in the theorem; this can be achieved by choosing ν/κ in such a

way that κk − κk+1 is minimal, and that νk+2 < κk (the latter condition can be weakened considerably).

Conversely, if one wishes to express jeu de taquin slides on a companion tableau of T in terms of coplactic

operations on T , it is necessary to replace the condition of κ′-dominance in the theorem by a condition

stated in terms of coplactic graphs. This is possible using the following proposition.

3.4.3. Proposition. Let T ∈ SST(χ, n), and let ν/κ be a skew shape with ν − κ = wtT . Then the

following are equivalent

(i) T is κ-dominant;

(ii) no operation ei can be applied more than κi − κi+1 times successively to T ;

(iii) no operation fi can be applied more than νi − νi+1 times successively to T .

For instance, for the tableau T of (5) used in the example above we have κ = (6, 4, 4, 2, 1, 0) and

ν = (9, 8, 6, 5, 3, 2), so the proposition states that e1 cannot be applied to T , that e3, e4, f0, f2 and f4
cannot be applied more than once to T , and that e0, e2, f1, and f3 cannot be applied more than twice; this

can be verified. One finds moreover that the statement can be sharpened for e3 (which cannot be applied)

and for f3 (which can be applied only once); this corresponds to the fact that T is also ν′/κ′-dominant,

with ν′ = (8, 7, 5, 4, 3, 2) and κ′ = (5, 3, 3, 1, 1, 0).

Proof. We first reduce to a statement about words, by replacing T by w = wS(T ). Let p be any

dominant word of weight κ, denote by ri and si the maximal number of times ei respectively fi can

be applied to w, and put ci = κi − κi+1, di = νi − νi+1. We shall prove for any i ∈ [n − 1]

equivalence between: (1) pw is dominant for i, (2) ri ≤ ci, (3) si ≤ di. Since wtw = ν − κ

implies ri − si = ci − di, (2) and (3) are equivalent. We prove equivalence of (1) and (2) for any

word w ∈ [n]∗. Subwords that are neutral for i neither affect condition (1) nor the value of ri. We

remove such subwords from w, reducing it to (i+ 1)riisi , and in (1) also from p, reducing it to ici . What

remains is to show that ici(i + 1)riisi is dominant for i if and only if ri ≤ ci, but this is obvious.

3.4.4. Corollary. Let T ∈ SST(χ) and T ′ ∈ SST(χ′) be jeu de taquin equivalent, and ν/κ a skew shape.

Then T is ν/κ-dominant if and only if T ′ is so, in which case the companion tableaux of T and T ′ of

shape ν/κ are dual equivalent.
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Proof. By theorem 3.3.1, T and T ′ have isomorphic coplactic graphs, and proposition 3.4.3 then

shows that T is ν/κ-dominant if and only if T ′ is. Let T̄ and T̄ ′ respectively be the companion

tableaux of T and T ′ of shape ν/κ, and consider an inward jeu de taquin slide into the same square

applied to each of them. By theorem 3.4.2, the result will in either case be a companion tableau of

a tableau obtained by a sequence of raising operations from T respectively from T ′. Moreover, since

the condition determining the length of those sequences can be expressed in terms of the coplactic

graphs of T and T ′ by proposition 3.4.3, the two sequences will be identical. This implies on one

hand that the tableaux T̃ , T̃ ′ obtained by applying the sequences are jeu de taquin equivalent (by

theorem 3.3.1), and on the other hand that the jeu de taquin slides applied to T̄ and T̄ ′ leave the

empty square in the same row, and therefore result in tableaux of equal shape. As these resulting

tableaux are companion tableaux of the jeu de taquin equivalent tableaux T̃ and T̃ ′, respectively, we

have arrived at a situation similar to our point of depart, but with T, T ′ replaced by T̃ , T̃ ′. By the

same reasoning the shapes of the companion tableaux will remain equal when further inward slides

are applied, and by proposition 2.4.2 this proves that T̄ and T̄ ′ are dual equivalent.

This proof shows that jeu de taquin slides performed on T commute with jeu de taquin slides

performed on a companion tableau of T (since clearly T̃ and T̃ ′ are linked by the same sequence of jeu

de taquin slides as T and T ′); this is essentially what is stated in the main theorem 5.3.1 of [vLee2], but

the proof here is simpler.

One may ask how practical this alternative method of computing coplactic operations is. For per-

forming single coplactic operations, or for following prescribed paths in the coplactic graph (such as the

one used in figure 1), the method is cumbersome, as one (repeatedly) has to adapt the shape ν/κ to

single out the required coplactic operation. (Note however that the path that always applies ei with

the largest possible i can be found without such adaptations.) On the other hand, when the goal is

just to compute R0(T ), the fact that one often gets more than one coplactic operation at a time is an

advantage, as is the absence of a need to repeatedly recompute globally defined quantities, such as the

location of the square affected by some ei. In addition, this method is less error prone when used for

manual computation. For instance in (5), one can find by computing

0 1 2

0 1 1 3

2 2

1 2 4

3 3

3 4

.

0 0 1 1 2

1 1 2 2 3

2 3 3 4

3

4

that R0


0 1

0 1 1 3

0 2 2 3

1 4 4 5

3 5

 =

0 0

0 0 1 1

0 1 1 2

1 2 2 3

2 4

.
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4 Some historical comments

§4. Some historical comments.

Now that we have seen the Littlewood-Richardson rule from a modern perspective, let us look at some

elements of its intriguing history, in particular the two papers [LiRi] and [Rob], written in the 1930’s.

4.1. The paper by Littlewood and Richardson.

The paper in which the Littlewood-Richardson rule is first stated, is mainly concerned with symmetric

group characters and Schur functions (a term introduced in that paper, though mostly contracted to

“S-functions”). Out of 16 sections, only §8 deals with the multiplication of S-functions. Remarkably,

semistandard tableaux do not occur explicitly, and in particular are not used in the definition of Schur

functions; instead these are expressed in terms of power sum symmetric functions using symmetric group

characters. In fact no attempt is made at all to express Schur functions in terms of monomials, or even

of minimal symmetric polynomials mλ, although curiously the opposite is done, in §5.

Semistandard tableaux do occur implicitly, as follows. For µ = (r) ∈ Pr one has sµ = hr, and

every skew semistandard tableau of weight µ is automatically a Littlewood-Richardson tableau; call the

shape of such a tableau a horizontal strip. As starting point for multiplication of S-functions, it is shown

that sλhr is the sum of all sν with ν/λ a horizontal strip (this agrees with our proposition 1.4.5). By

iteration this implies that sλhα0 · · ·hαl is the sum of sν taken over all ways to successively add horizontal

strips of sizes α0, . . . , αl to Y (λ) yielding Y (ν). The number of ways to so obtain a given partition ν is

#{T ∈ SST(ν/λ) | wtT = α }.
For the general case of multiplying S-functions, the following rule is formulated ([LiRi, p. 119]):

“Theorem III.—Corresponding to two S-functions {λ1, . . . , λp}, {µ1, . . . , µq} build tableaux

A and B as in Theorem II. Then in the product of these two functions, the coefficient of any

S-function {ν1, ν2, . . .} is equal to the number of compound tableaux including all of the symbols

of A and B, and corresponding to {ν1, ν2, . . .}, that can be built according to the following rules.

Take the tableau A intact, and add to it the symbols of the first row of B. These may be

added to one row of A, or the symbols may be divided without disturbing their order, into any

number of sets, the first set being added to one row of A, the second set to a subsequent row,

the third to a row subsequent to this, and so on. After the addition no row must contain more

symbols than a preceding row, and no two of the added symbols may be in the same column.

Next add the second row of symbols from B, according to the same rules, with this added

restriction. Each symbol from the second row of B must appear in a later row of the compound

tableau than the symbol from the first row in the same column.

Similarly add each subsequent row of symbols from B, each symbol being placed in a later

row of the compound tableau than the symbol in the same column from the preceding row of B,

until all the symbols of B have been used.”

The tableaux A and B are Young diagrams of shapes λ and µ, filled with formal symbols. The rows of B

are rearranged into horizontal strips filling Y (ν/λ); as indicated above, such a rearrangement corresponds

to some T ∈ SST(ν/λ) with wtT = µ. The restriction added in the last two paragraphs depends on the

particular rule that is used to ensure that each horizontal strip is obtained in only one way from a given

row of B; this rule can be rephrased as stating that within each row of B, the number of the destination

row in Y (ν/λ) of each symbol increases weakly from left to right. If we replace each symbol in B by

this number of its destination row, then the resulting filling of Y (µ), which has weakly increasing rows

by construction, is required in the last two paragraphs to also have strictly increasing columns; in our

terminology, they form a semistandard Young tableau T̄ ∈ SST(µ/(0)). In fact, T̄ can be seen to be a

companion tableau of T in the sense of the current paper. If we interpret the rearrangement of symbols

as a bijection Y (µ)→ Y (ν/λ), then we almost arrive at the notion of pictures; the only difference is that

when some sequence of symbols from a row of B are moved to a common destination row, this happens

“without disturbing their order”, rather than by reversing their order, as is done in the case of pictures.

Although claimed to be generally valid, Theorem III is only proved in [LiRi] when µ has at most

two parts (the first sentence after the statement of the Theorem is “No simple proof has been found that
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4.1 The paper by Littlewood and Richardson

will demonstrate it in the general case”; indeed “simple” can be omitted). We already mentioned the

case µ = (r). The proof for a partition µ = (q, r) with two parts q ≥ r > 0 is based on the identity

sµ = hqhr − hq+1hr−1 (an instance of a determinantal formula known as the Jacobi-Trudi identity),

which means that cνλ,µ can be found by subtracting the coefficient of sν in sλhq+1hr−1 from the one

in sλhqhr; these coefficients can be determined by counting the tableaux in SST(ν/λ, 2) of weights

(q + 1, r − 1) and (q, r), respectively. To show that the difference matches the number of tableaux given

by Theorem III, the rule is reformulated in terms of lattice permutations (cf. proposition 1.4.5), and a

bijective correspondence in SST(ν/λ, 2) is given between tableaux of weight (q, r) that do not satisfy the

rule, and all tableaux of weight (q + 1, r− 1). It is shown that this transformation, which coincides with

our e0, preserves semistandardness.

It is remarkable that the authors state their rule as a Theorem when, by their own admission, they

only have a proof for some very simple cases. In part this can be attributed to the general attitude at

the time, which appears to have been that combinatorial statements are less in need of a proof than,

say, algebraic statements; on the other hand, they do devote three pages to a proof of the special cases.

It appears that they viewed their rule mainly as a computational device, useful to find a result, whose

correctness may then be verified by other means. They work out a complete example for the computation

of s(4,3,1)s(2,2,1) (in their notation {4, 3, 1}×{221}), displaying all 34 tableaux contributing to the result.

They use  a, b, c, d

e, f, g

h

 ,

α, β

γ, δ

ε

 ,

as tableaux A, B; replacing the symbols of A by 0’s because they don’t move, they then display tableaux

like
0 0 0 0 α

0 0 0 β

0 γ δ

ε

;

note the striking resemblance with pictures as displayed in (8) (but the order of γ and δ is unchanged

here). It is clear that they use a geometric criterion (γ should remain below α, δ below β, and ε below γ)

rather than the lattice permutation condition; their method is therefore an efficient one, as we discussed

following proposition 1.4.5. The authors go on to indicate explicitly how the resulting decomposition of

the product can be verified by computing the dimension of the corresponding (reducible) representation of

the symmetric group S13. Interestingly, while their set of tableaux is correct, they forget the contributions

of three of them to the decomposition, whence the dimension of the printed result, 398541, falls short

of the correctly predicted dimension 450450; this in spite of their claim that “this equation proves to be

correct”.

One more curious point concerns the Theorem II referred to in Theorem III. It describes the set of

S-functions appearing in a product of two S-functions, without giving their multiplicities. This would

seem to contradict our statement that no method is known to decide membership of that set, which does

not amount to finding (or failing to find) an appropriate Littlewood-Richardson tableau. This is not so

for two reasons. First, the criterion given is even more impractical than using the Littlewood-Richardson

rule: it states (in a slightly different formulation) that occurrence of sν in sλsµ is equivalent to the

existence of a bijection Y (λ ∗ µ) → Y (ν) mapping squares of any row to distinct columns, and squares

of any column to distinct rows. Enumerating this set of bijections (or proving it empty) is certainly not

easier than enumerating its subset of pictures, which is equivalent to enumerating LR(ν/µ, λ). Second,

the criterion is wrong; for instance the bijection

a b

c d

e f

g h

−→

a b e h

c d

f

g
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4.2 The paper by Robinson

satisfies the requirements, while c
(4,2,1,1)
(2,2),(2,2) = 0. The proof that is given in fact only estabishes the necessity

of the condition, not its sufficiency. Fortunately, Littlewood and Richardson will be remembered more

for a true Theorem they did not claim to prove, than for a false Theorem they did claim to prove.

4.2. The paper by Robinson.

In [Rob], Robinson builds forth on these ideas, claiming to complete the proof of the rule. The paper

is quite difficult to read however, its formulations extremely obscure, and its argumentation mostly

implicit; we shall now first try to summarise the argument as it appears to have been intended. In a

deviation from the previous paper, the proof does not use the Jacobi-Trudi identity, but rather descending

induction on the weight µ with respect to ‘≤’, based on the expression sµ = hµ −
∑
µ′>µKµ′µsµ′ , where

hµ = hµ0
hµ1
· · ·, and the Kµ′µ are non-negative integer coefficients (nowadays called Kostka numbers).

By taking λ = (0) in the formula of [LiRi] for the decomposition of products sλhµ, we see that Kµ′µ is

the number of semistandard Young tableaux of shape µ′ and weight µ. For µ = (q, r) for instance, one

easily finds sµ = hqhr − s(q+1,r−1) − · · · − s(q+r,0).
Robinson defines the correspondenceR of (9), and uses it as follows to show that each L ∈ LR(ν/λ, µ)

corresponds to an occurrence of sν in sλsµ. We already know that each T ∈ SST(ν/λ) with wtT = µ

corresponds to an occurrence of sν in sλhµ. If R0(T ) 6= T , then R0(T ) corresponds by inductive assump-

tion to an occurrence X of sν in sλsµ′ , where µ′ = wtR0(T ) > µ. Viewing sµ′ as a constituent of hµ, and

thereby sλsµ′ as a part of sλhµ, we let T correspond to the occurrence of sν in sλhµ matching X. There

may be distinct T, T ′ ∈ SST(ν/λ) of weight µ with R0(T ) = R0(T ′), but in that case the semistandard

Young tableaux R1(T ) and R1(T ′) of shape µ′ and weight µ differ, and can be used to distinguish distinct

occurrences of sµ′ in hµ, and hence to distinguish occurrences of sν matching X in distinct contributions

sλsµ′ to sλhµ. Indeed the number of such semistandard Young tableaux is precisely the multiplicity

Kµ′µ of sµ′ in hµ. The tableaux T ∈ SST(ν/λ) that remain, namely those with T = R0(T ) and therefore

T ∈ LR(ν/λ, µ), must then correspond to the occurrences of sν in the remainder of sλhµ after subtraction

of all the sλsµ′ , i.e., in sλsµ, as claimed.

In order to give the above argument a certain transparency, we have named the occurring multiplic-

ities Kµ′µ, and related them to semistandard Young tableaux as they occur (implicitly) in [LiRi]. This

is not however the way it is done in [Rob]. Rather than using the formula of Littlewood and Richardson

for the decomposition of hµ = s(0)hµ into Schur functions, Robinson uses a formula by Young, given in

the cryptic form hα =
∑[∏

Sλrsrs

]
(α), and accompanied by the following “explanation”, quoted literally

from [Young]:

“Srs where r < s represents the operation of moving one letter from the s-th row up to the

r-th row, and the resulting term is regarded as zero, whenever any row becomes less than a row

below it, or when letters from the same row overlap,—as, for instance, happens when α1 = α2

in the case of S13S23.”

This is what is nowadays called Young’s rule, although it is usually stated in a somewhat different

form. The meaning of this original formulation appears to be as follows. The summation is over certain

collections (λrs)1≤r<s≤n with λrs ∈ N, each of which gives rise to a monomial M =
∏
Sλrsrs in commuting

indeterminates Srs. An operation on Young diagrams is associated to such M , where each factor Srs
moves a square from row s up to row r, all factors acting simultaneously. An application of this operation

is assumed implicitly to vanish if any row of the diagram contains too few squares (in the given summation

with application to Y (α), only terms with
∑
r λrs ≤ αs need to be considered), and it also vanishes in the

explicitly (if not very clearly) described cases. In the summation each remaining operation contributes the

Schur function corresponding to the shape of the diagram produced by the application of the operation

to Y (α).

In order to understand this formula, it helps to compare it to the decomposition formula in terms

of semistandard Young tableaux: any P ∈ SST(β) with wtP = α should correspond to a monomial M ,

whose operation transforms Y (α) into Y (β). This can be achieved by taking λrs = P sr for all r, s

(cf. definition 1.4.1): then each entry of P records the row of Y (α) that its square came from (i.e., P
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4.2 The paper by Robinson

is obtained by applying M as square-moving operation to 1α, with each entry moving along with its

square). It remains unclear how the quotation above can be interpreted as making all operations vanish

that are not related in this manner to any tableau P . The given restrictions may be read as requiring β

to be a partition, and requiring that squares from one row do not end up in the same column (assuming

the ambiguity about the destination column of squares is resolved). But even with the most lenient

interpretation, it is a mystery how in the result of application to 1α the monotonicity of columns is

enforced: for instance, for α = (1, 1, 1, 1), the operation associated to S12S24 must be made to vanish,

while the one for S12S23S34 should survive (their applications to 1α result in 1 2
4
3

and 1 2
3
4

, respectively).

In any case, Robinson proceeds to define a process of transforming non-lattice permutations (in

the form of words over an alphabet {c1, c2, . . .}) into lattice permutations, which he calls “association I”;

incidentally, he attributes the procedure to D. E. Littlewood. In our terminology it amounts to repeatedly

applying the raising operation ei with smallest possible index i (where the letter cj is treated like the

letter j − 1 in our description), until no further application is possible. Applying it to the Semitic

reading wS(T ) of a skew tableau T of weight α, and writing the resulting lattice permutation back

into the shape of T , this association corresponds to R0 as described in corollary 3.3.4. Inspired by

the fact that the monomials
∏
Sλrsrs are described as “products of operations”, Robinson associates

such a monomial M to the sequence of operations ei used in determining association I, by grouping

together maximal sequences of successive operations of the form es−1, es−2, . . . , er+1, er, replacing them

by Srs, and multiplying all of these. He calls the resulting correspondence between the original word

and this monomial “association II”. For instance, the sequence used in our figure 1 would be grouped as

(e0), (e0), (e1), (e2, e1), (e2, e1), (e3, e2), (e3, e2), (e4), (e4, e3, e2), and would give rise to the monomial

M = S2
01S12S

2
13S

2
24S45S25.

Robinson now states that any such M is one of the monomials that arises when Young’s rule is applied

for hα (in our terms this means that M corresponds to a semistandard Young tableau P of weight α);

this he justifies only by checking one example. We can check it for our example by applying M to 1α
(since α = (3, 4, 2, 3, 2, 2) is not a partition, we must extend our definitions a bit, allowing intermediate

“tableaux” whose shapes are not Young diagrams); alternatively we can find P directly by using P sr = λrs
for r < s < 6, and P ss = αs −

∑
r<s P

s
r :

(
P sr
)
0≤r≤s<6

=



3 2 0 0 0 0

2 1 2 0 0

1 0 2 1

1 0 0

0 1

0

 , whence P =

0 0 0 1 1

1 1 2 3 3

2 4 4 5

3

5

.

That this condition is always satisfied (i.e., that P is a semistandard Young tableau) is by no means clear

however. If another criterion for selecting ei were used (say taking i maximal), it would in fact be very

hard to associate a proper monomial M to the sequence of operations ei at all. If we admit that the

construction always works, then association II defines a map that, applied to the word wS(T ), may serve

as R1 (keeping in mind that Robinson works directly with monomials rather than with semistandard

Young tableaux). It is easy to see that the shape β of M (i.e., the shape of the corresponding tableau P )

matches the weight of the lattice permutation found by association I, but not that the map R defined

by combining R0 and R1 is a bijection, as required in Robinson’s proof sketched above. For this, it is of

vital importance that the sequence of raising operations can be reconstructed from M , which is far from

obvious since the Srs commute, but the operations ei do not. The key property is that in the sequence of

factors Srs found, the index s increases weakly, while for fixed s the index r decreases weakly (this is the

hard part); once this is established the fact that M corresponds to a semistandard Young tableau can

also be proved easily. This is not all however, since the surjectivity of R must also be established, i.e.,

that every monomial M of shape β arising in Young’s rule applied to hα is obtained for some word wS(T )

of weight α that corresponds under association I to a given lattice permutation of weight β.

For reading words wS(P ′) of tableaux P ′ of partition shape β, the mentioned key property is not

difficult to establish; moreover the lattice permutation is wS(1β) in this case, while P = P ′. Since we
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know (by theorem 3.3.1) that the coplactic graph of any word wS(T ) is isomorphic to that of some such

word wS(P ′) (with T . P ′), we can see that the properties stated above do always hold. However,

these facts are highly non-trivial given only the information provided in [Rob]. Nonetheless, Robinson

apparently considers them to be obvious: nothing in the paper even suggests that anything needs to be

proved. In conclusion, although Robinson gives an interesting construction that actually works, and that

could be used in a proof of the Littlewood-Richardson rule, his argument contains such important gaps,

that it definitely cannot be considered to provide such a proof.

4.3. Later developments.

The more recent history of the Littlewood-Richardson rule is no less interesting than the initial phase,

but since it is much more accessible and better known, we shall limit ourselves to a brief overview.

The flawed proof given by Robinson is so incomprehensibly formulated, that its omissions apparently

go unnoticed for decades; his reasoning is reproduced in [Litw] by way of proof. In the early 1960’s,

in an unrelated study, Schensted gives a combinatorial construction [Sche] that will later be considered

to be essentially equivalent to that of Robinson; this in spite of the fact that it defines a rather different

kind of correspondence by an entirely different procedure. Schensted’s construction clearly defines a

bijection, but without any obvious relation to the Littlewood-Richardson rule (although it does involve

tableaux); nonetheless it will later be central to several proofs of that rule. Initially however, no such

connection is made, although the combinatorial significance of the construction is soon observed by

Schützenberger [Schü1].

This changes in the 1970’s, and important new properties of Schensted’s construction are found:

[Knu], [Gre]. From this development emerge the first proofs of the Littlewood-Richardson rule: Lascoux

and Schützenberger introduce jeu de taquin, and using it a proof is given in [Schü3], while Thomas gives

a proof that is based entirely on a detailed study of Schensted’s construction in [Thom1], [Thom4]. The

former proof is by means of a statement similar to our corollary 2.5.3, but it is obtained differently (e.g.,

for confluence of jeu de taquin, results of [Knu] and [Gre] are used). The latter proof is interesting in that

it already derives properties of Schensted’s correspondence that are related to pictures. Both approaches

differ essentially from [LiRi] and [Rob], in that semistandard tableaux of shape λ and weight α figure in the

same manner as in the present paper, identifying monomials Xα in sλ rather than constituents sλ of hα.

We also note that, whereas in [Rob] the basic construction is that of the component R0 of Robinson’s

bijection, with many questions remaining unanswered about R1, it is R1 that is central in [Schü3],

and R0 does not even occur there. Two publications from this period do take up the construction

of [Rob]. In [Thom2] the originally deterministic description of R0 is generalised to a rewrite system

(cf. corollary 3.3.4), which is shown to be confluent. In [Macd, I (9.2)] the task of completing Robinson’s

argumentation (and presenting it in an understandable way) is taken up. A justification is provided for

it, by establishing (in the course of several pages of detailed verifications) some crucial combinatorial

properties of Robinson’s construction; as we noted above, the need to prove such properties is not in any

way mentioned in the original paper. Even so, Macdonald does not appear to give a convincing argument

proving the surjectivity of R, and some additional verifications seem to be needed.

After the appearance of these three proofs of the Littlewood-Richardson rule, many publications

follow; some present interesting new ideas that lead to new proofs, but most of these are based on the

same construction as one of these earlier proofs. Of particular interest is [Zel1], whose construction relates

to all three approaches. It generalises Schensted’s correspondence to pictures, which in essence consists

in showing that its bijectivity is preserved when certain restrictions parametrised by shapes (like ν/κ-

dominance) are imposed at both sides. This is exactly the information that is required in Schensted-based

proofs (cf. [Thom4], [White], [ReWh]), to make the connection with Littlewood-Richardson tableaux.

One also obtains as a special case a bijection R matching the specification (9), which provides a shortcut

for the proof of [Macd] (what is not so obvious, is that this is in fact the same correspondence as

defined by Robinson). Finally, this establishes a symmetry between R0 and R1 (which is what is most

notably missing in the approach of [Schü3]), which allows not only R1 but also R0 to be defined by

jeu de taquin. At the time however, these connections are not made, and the paper apparently does

not get much attention (this may be due to its somewhat obscure definition of pictures, which bears
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no apparent relation to semistandard tableaux). The mentioned observations are made only quite a bit

later, in [vLee2].

There are many more recent developments that relate to the Littlewood-Richardson rule; we shall

mention a few here, but a detailed discussion is beyond the scope of this paper. Alternative combina-

torial expressions for the coefficients cνλ,µ have been found (e.g., [BeZe]), as well as generalisations to

representations of other groups than GLn(C) ([Litm1]), and yet more new proofs. Of the latter we

note the “involution style” proofs in [ReSh] and [Gash], which (apart from being particularly simple and

concise) are remarkable by their similarity to the original proof for two-part partitions µ in [LiRi]: they

use the Jacobi-Trudi identity to express the Schur function sµ in terms of complete symmetric functions,

and proceed to combinatorially cancel terms obtained after expansion of the determinant. The crucial

difference (it seems) with that original proof is that the factors in the products hα of complete symmetric

functions are ordered in such a way that the weights α are “wide apart”, and only dominant if α = µ:

for µ = (q, r) one uses the expression sµ = h(q,r) − h(r−1,q+1) rather than sµ = h(q,r) − h(q+1,r−1).

We conclude by returning to the practical use of the rule as a computational tool, which was what

it was formulated for in the first place, but which seems to have moved to the background in the course

of time. Already in 1968, early in the computer era, the rule is implemented (including dimension checks,

as there is no proof at that time!), and used to mechanically produce tables published in [Wyb]. The

programme containing that implementation, originally written in FORTRAN, has evolved (with consider-

able extensions and several conversions to different programming language) into the current programme

SCHUR. A more recent paper [ReWh] discusses theoretical aspects of computer implementation of the

Littlewood-Richardson rule. Surprisingly, what it calls “a new combinatorial rule for expanding the prod-

uct of Schur functions”, is merely a translation of the problem of multiplying sλ ∗sµ into counting objects

that are straightforward encodings of pictures Y (λ ∗µ)→ Y (ν), for varying ν; as we have indicated, this

differs only marginally from the process described in [LiRi]. Nonetheless, the formulation given is more

straightforward to implement efficiently than most other formulations current at that time. While the

paper does not specify a detailed algorithm, it has been used in concrete implementations (but we know

of none that are available at the time of writing).

Currently, there are several freely available and efficient implementations of the Littlewood-

Richardson rule, in various computer algebra systems. We mention an implementation by J. Stem-

bridge, contained in the Maple package SF (http://www.math.lsa.umich.edu/~jrs/maple.html) and

a similar implementation in ACE (http://weyl.univ−mlv.fr/~ace/). The stand-alone program LiE

(http://wwwmathlabo.univ−poitiers.fr/~maavl/LiE/) contains an implementation, written by the

current author; it is available for online use and for consultation of the documented source code [vLee3],

via the mentioned WWW-page.
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