- 1. Dans un plan euclidien \mathcal{P} muni d'un repère euclidien $\mathcal{R} = (\mathcal{O}, \vec{\imath}, \vec{\jmath})$ (donc en particulier $(\vec{\imath}, \vec{\jmath})$ forme une base orthonormée de l'espace $\overrightarrow{\mathcal{P}}$) on fixe les points A, B de coordonnées (2,3) respectivement (-4,11) par rapport à \mathcal{R} . Soit \mathcal{C} l'ensemble des points $P \in \mathcal{P}$ tels que $\overrightarrow{AP} \cdot \overrightarrow{BP} = -12$.
 - a. Donner une équation de \mathcal{C} en termes des coordonnées (x,y) des points $P \in \mathcal{C}$.

$$\sqrt{\text{On obtient } (x-2)(x+4) + (y-3)(y-11)} = -12 \text{ soit } x^2 + 2x + y^2 - 14y + 37 = 0.$$

- b. En déduire que \mathcal{C} est un cercle, dont on détaillera le centre et le rayon.
 - \sqrt{En} écrivant l'équation $(x+1)^2 + (y-7)^2 = 13$ on voit que \mathcal{C} est le cercle de centre (-1,7) et de rayon $\sqrt{13}$.
- **2.** On considère un plan affine \mathcal{P} muni d'un repère cartésien $\mathcal{R} = (\mathcal{O}, \vec{\imath}, \vec{\jmath})$. Soit \mathcal{O}' le point de coordonnées (5, -8) par rapport à \mathcal{R} , et soient $\vec{u} = -\vec{\imath} + 3\vec{\jmath}$, et $\vec{v} = -2\vec{\imath} + \vec{\jmath}$.
 - a. Montrer que $\mathcal{R}' = (\mathcal{O}', \vec{u}, \vec{v})$ est un autre repère cartésien.
 - \sqrt{ll} suffit pour cela que (\vec{u}, \vec{v}) soit une base de $\overrightarrow{\mathcal{P}}$ (aucune restriction est imposée à l'origine d'un repère). Or \vec{u}, \vec{v} sont clairement deux vecteurs indépendants, donc une base dans l'espace $\overrightarrow{\mathcal{P}}$ qui est de dimension 2. On pourra éventuellement exprimer explicitement $\vec{i} = \frac{1}{5}\vec{u} \frac{3}{5}\vec{v}$ et $\vec{j} = \frac{2}{5}\vec{u} \frac{1}{5}\vec{v}$ pour montrer que \vec{u}, \vec{v} engendrent bien tout $\overrightarrow{\mathcal{P}}$.
 - b. Donner les coordonnées par rapport à \mathcal{R} du point P dont les coordonnées par rapport au repère \mathcal{R}' sont (2,-1).
 - $\sqrt{\text{Ce point est } \mathcal{O}' + 2\vec{u} \vec{v} \text{ soit } \mathcal{O} + 5\vec{\imath} 8\vec{\jmath} + 2\vec{u} \vec{v} = \mathcal{O} + 5\vec{\imath} 3\vec{\jmath} \text{ donc ces coordonnées sont } (5, -3).}$
 - c. Donner les coordonnées par rapport à \mathcal{R}' du point Q dont les coordonnées par rapport au repère \mathcal{R} sont (3,-4).
 - $\sqrt{\ }$ Ici les expressions pour $\vec{\imath}$ et $\vec{\jmath}$ en termes de \vec{u} et \vec{v} mentionnées dans la réponse à la question a seront utiles. Le point est $\mathcal{O}+3\vec{\imath}-4\vec{\jmath}=\mathcal{O}'-2\vec{\imath}+4\vec{\jmath}=\mathcal{O}'-\frac{2}{5}(\vec{u}-3\vec{v})+\frac{4}{5}(2\vec{u}-\vec{v})=\mathcal{O}'+\frac{6}{5}\vec{u}+\frac{2}{5}\vec{v}$ donc les coordonnées demandées sont $(\frac{6}{5},\frac{2}{5})$. On pourra également trouver ce résultat par la résolution de l'équation $\mathcal{O}'+x'\vec{u}+y'\vec{v}=\mathcal{O}+3\vec{v}-4\vec{\jmath}$ qui donne le système linéaire -x'-2y'=-2, 3x'+y'=4.
 - d. On désigne par $x, y \in \mathbf{R}$ les coordonnées par rapport à \mathcal{R} d'un point P du plan (on a donc $P = (x,y)_{\mathcal{R}} \stackrel{\text{def}}{=} \mathcal{O} + x\vec{\imath} + y\vec{\jmath}$), et par x', y' ses coordonnées par rapport à \mathcal{R}' (donc $P = (x',y')_{\mathcal{R}'}$). Soit $\mathcal{D} = \{(x,y)_{\mathcal{R}} \mid 2x+y+7=0\}$, une droite donnée par rapport à \mathcal{R} par l'équation 2x+y+7=0. Donner une équation pour cette droite \mathcal{D} par rapport à \mathcal{R}' , donc en termes de x', y'.
 - √ Comme dans la question b, un point de coordonnées (x',y') par rapport à \mathcal{R}' aura coordonnées (5-x'-2y',-8+3x'+y') par rapport à \mathcal{R} ; en détail, cela découle du calcul $\mathcal{O}'+x'\vec{u}+y'\vec{v}=\mathcal{O}+5\vec{\imath}-8\vec{\jmath}+x'(-\vec{\imath}+3\vec{\jmath})+y'(-2\vec{\imath}+\vec{\jmath})=\mathcal{O}+(5-x'-2y')\vec{\imath}+(-8+3x'+y')\vec{\jmath}$. Ceci permet d'écrire x=5-x'-2y' et y=-8+3x'+y'. En substituant ces expressions, l'équation 2x+y+7=0 devient x'-3y'+9=0, ce qui est (une forme possible de) l'équation cherchée.
- 3. On considère un triangle aux sommets A, B, C dans un plan affine \mathcal{P} . Le triangle est un repère affine dans \mathcal{P} , et on considère trois points P, Q, R dont les coordonnées barycentriques sont respectivement $(0, \lambda, 1 \lambda), (1 \mu, 0, \mu)$, et $(\nu, 1 \nu, 0)$, pour certaines valeurs $\lambda, \mu, \nu \in \mathbf{R}$.
 - a. Expliquer pour quoi P est situé sur la droite (BC), et que tout point de cette droite peut être obtenu comme P pour un choix convenable de λ . (Par un argument similaire qu'on ne demande pas de répéter, Q est un point de la droite (AC), et R est un point de (AB).)
 - $\sqrt{}$ Le point P de coordonnées barycentriques $(0,\lambda,1-\lambda)$ est par définition égal au barycentre $\mathrm{bar}((0,A),(\lambda,B),(1-\lambda,C))=\mathrm{bar}((\lambda,B),(1-\lambda,C))$ ce qui est une point de la droite (BC). Plus précisément c'est $C+\lambda\overline{CB}$, et ce point parcourt la droite (BC) quand λ parcourt \mathbf{R} .
 - b. Donner une condition en termes de λ, μ, ν qui correspond au fait que P, Q, R sont alignés.
 - $\sqrt{\text{Pour cela on a la condition}}$

$$\begin{vmatrix} 0 & 1-\mu & \nu \\ \lambda & 0 & 1-\nu \\ 1-\lambda & \mu & 0 \end{vmatrix} = 0 \iff (1-\lambda)(1-\mu)(1-\nu) + \lambda\mu\nu = 0$$

- c. En déduire que si aucun des points P,Q,R n'est confondu avec un sommet du triangle, alors P,Q,R sont alignés si est seulement si le produit $\frac{\lambda}{1-\lambda} \times \frac{\mu}{1-\mu} \times \frac{\nu}{1-\nu}$ vaut -1.
 - $\sqrt{\ On\ a\ P=C\ si\ \lambda=0\ et\ P=B\ si\ \lambda=1},\ donc\ l'hypothèse\ P\notin\{B,C\}\ veut\ dire\ \lambda\notin\{0,1\}\ ;$ de façon similaire les deux autres hypothèses disent $\mu,\nu\notin\{0,1\}$. Alors les deux termes dans le premier membre de l'équation sont non nuls, et on peut la réécrire $(1-\lambda)(1-\mu)(1-\nu)=-\lambda\mu\nu$ et donc $\frac{\lambda}{1-\lambda}\times\frac{\mu}{1-\mu}\times\frac{\nu}{1-\nu}=-1$
- **4.** Soit \mathcal{P} un plan euclidien, muni d'un repère euclidien $\mathcal{R} = (\mathcal{O}, \vec{\imath}, \vec{\jmath})$. En termes des coordonnées (x, y) par rapport à \mathcal{R} , on définit une droite \mathcal{D}_1 dans \mathcal{P} par l'équation 12x 5y = -18.
 - a. Donner une expression pour la distance d'un point $(x, y)_{\mathcal{R}}$ du plan \mathcal{P} à la droite \mathcal{D}_1 . [Indication : cette expression doit avoir la valeur 0 pour tout point qui vérifie l'équation de \mathcal{D}_1 . Et n'oubliez pas que la distance est toujours un nombre positif.]
 - \sqrt{Si} A est un point de \mathcal{D}_1 et \vec{n} un vecteur unitaire normal à $\overrightarrow{\mathcal{D}_1}$, alors la distance d'un point P à \mathcal{D}_1 est $|\overrightarrow{AP} \cdot \vec{n}| = |\overrightarrow{OP} \cdot \vec{n} \overrightarrow{OA} \cdot \vec{n}|$. Un vecteur normal à $\overrightarrow{\mathcal{D}_1}$ est $12\vec{i} 5\vec{j}$, c'est-à-dire celui de coordonnées (12, -5); on peut le rendre unitaire an divisant par $\sqrt{12^2 + 5^2} = \sqrt{169} = 13$ donc $\vec{n} = (\frac{12}{13}, -\frac{5}{13})$. L'expression est donc de la forme $|\frac{12}{13}x \frac{5}{13}y c|$ où la constante $c = \overrightarrow{OA} \cdot \vec{n}$ se calcule soit en choisissant un point concret $A \in \mathcal{D}_1$, par exemple $A = \mathcal{O} + \vec{i} + 6\vec{j}$ (le résultat est $c = \frac{12}{13} \frac{30}{13} = -\frac{18}{13}$), soit en prenant la valeur qui rend l'expression nulle si 12x 5y + 18 = 0, ce qui donne aussi $c = -\frac{18}{13}$. L'expression cherchée est donc $|\frac{12}{13}x \frac{5}{13}y + \frac{18}{13}| = \frac{1}{13}|12x 5y + 18|$.
 - b. La distance d'un point $(x,y)_{\mathcal{R}}$ de \mathcal{P} à une autre droite \mathcal{D}_2 de \mathcal{P} est donnée par l'expression $\left|\frac{4}{5}x-\frac{3}{5}y+\frac{14}{5}\right|$. Décrire l'ensemble des points qui ont la même distance à \mathcal{D}_1 qu'à \mathcal{D}_2 .
 - $\sqrt{\text{Dans on premier temps on peut écrire l'ensemble comme}}$

$$\{(x,y)_{\mathcal{R}} \mid \frac{1}{13}|12x - 5y + 18| = \frac{1}{5}|4x - 3y + 14|\}.$$

Puis on peut distinguer des cas selon les signes des expressions dont on prend la valeur absolue ; la distinction la plus économique est selon les cas où ces signes sont égaux ou opposés. En multipliant par $5 \times 13 = 65$ pour chasser les dénominateurs, on obtient

$$\{ (x,y)_{\mathcal{R}} \mid 60x - 25y + 90 = 52x - 39y + 182 \lor 60x - 25y + 90 = -52x + 39y - 182 \}$$

ce qui se simplifie à $\{(x,y)_{\mathcal{R}} \mid 4x+7y=46 \lor 7x-4y=-17\}$, une réunion de deux droites.

- c. On rappelle que pour une droite donnée \mathcal{D} de \mathcal{P} , la réflexion (orthogonale) par rapport à \mathcal{D} est une isométrie $r: \mathcal{P} \to \mathcal{P}$ qui envoie un point $Q \in \mathcal{P}$ vers le point r(Q) tel que le milieu M = bar(Q, r(Q)) du segment [Q, r(Q)] soit la projection orthogonale $\pi(Q)$ du point Q sur \mathcal{D} (en formule on aura $r(Q) = M \overline{MQ} = Q 2\overline{MQ}$, où $M = \pi(Q)$). Décrire une droite \mathcal{D} telle que l'image par la réflexion dans \mathcal{D} de la droite \mathcal{D}_1 soit égale à \mathcal{D}_2 . [Indication: il y a deux telles réflexions; en choisir une. On pourra utiliser question précédente.]
 - $\sqrt{}$ La réflexion dans l'une des deux bissectrices de \mathcal{D}_1 et \mathcal{D}_2 trouvées dans la question précédente fera l'affaire, par exemple celle dans la droite donnée par l'équation 4x + 7y = 46.
- 5. Dans un plan euclidien on considère trois droites $\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3$ dont aucune paire n'est parallèle (mais elles peuvent être concourantes, c'est-à-dire passer tous les 3 par un même point), et la composée $r_3 \circ r_2 \circ r_1$ des réflexions r_i correspondantes (r_i est la réflexion orthogonale par rapport à la droite \mathcal{D}_i).
 - a. Argumenter que cette composée est une isométrie indirecte de \mathcal{P} .
 - $\sqrt{}$ Chaque réflexion est une isométrie indirecte de \mathcal{P} , et la composée de n réflexions est directe si n est pair, et indirecte si n est impair. Ici n=3 est impair, donc la composée est une isométrie indirecte.
 - b. D'après la classification des isométries, il s'agit donc soit d'une réflexion, soit d'un réflexion glissée. Montrer que si $\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3$ sont concourantes, alors $r_3 \circ r_2 \circ r_1$ est une réflexion.
 - $\sqrt{\text{Si }P}$ est le point commun de $\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3$, alors $(r_3 \circ r_2 \circ r_1)(P) = P$ donc $r_3 \circ r_2 \circ r_1$ a P comme point fixe, et ne peut pas être une réflexion glissée.

- c. Dans ce cas, donner une description géométrique de la droite qui est l'axe de cette réflexion.
 - $\sqrt{Si \alpha}$ est l'angle orienté (déterminé modulo π) de \mathcal{D}_1 vers \mathcal{D}_2 alors $r_2 \circ r_1$ est une rotation d'angle 2α et de centre P. Cette rotation peut aussi être réalisée comme $r_3 \circ r_{\mathcal{D}}$ où \mathcal{D} est la droite obtenue à partir de \mathcal{D}_3 par rotation par un angle $-\alpha$ autour de \mathcal{P} . On a donc $r_2 \circ r_1 = r_3 \circ r_{\mathcal{D}}$ et $r_3 \circ r_2 \circ r_1 = r_3 \circ r_3 \circ r_{\mathcal{D}} = r_{\mathcal{D}}$, donc ce \mathcal{D} est la droite cherchée.

[Les questions restantes sont hors barème]

- d. Montrer que si $\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3$ ne sont pas concourantes, alors $r_3 \circ r_2 \circ r_1$ est une réflexion glissée.
 - $\sqrt{\text{Soit }\mathcal{D}_3'}$ la droite parallèle à \mathcal{D}_3 qui passe par le point d'intersection de \mathcal{D}_1 et \mathcal{D}_2 , et r_3' la réflexion par rapport à \mathcal{D}_3' . On peu écrire $r_3 \circ r_2 \circ r_1 = r_3 \circ r_3' \circ r_3' \circ r_2 \circ r_1$, dans quelle composition la partie $r_3' \circ r_2 \circ r_1$ est la réflexion par rapport à une droite \mathcal{D} décrite dans la question précédente, et $r_3 \circ r_3'$ est une translation par un vecteur \vec{v} non nul perpendiculaire à $\overrightarrow{\mathcal{D}_3}$ (et en longueur deux fois la distance entre \mathcal{D}_3' et \mathcal{D}_3). Puisque une réflexion déplace tout point dans une direction perpendiculaire à l'axe, la composée d'une réflexion et d'une translation ne peut avoir un point fixe (et don être une autre réflexion) que si la translation est dans une direction perpendiculaire à l'axe; l'argument sera donc complet si on peut montrer que \vec{v} n'est pas perpendiculaire à $\vec{\mathcal{D}}$, l'axe de la réflexion $r_3' \circ r_2 \circ r_1$. Mais \vec{v} est perpendiculaire à $\vec{\mathcal{D}_3}$, donc il s'agit de montrer que \mathcal{D} n'est pas parallèle à \mathcal{D}_3 , et c'est clair car elle était obtenue de \mathcal{D}_3 par la rotation par l'angle α qui n'est pas nul (modulo π).
- e. Dans ce cas décrire une réflexion r et une translation t telles que $r_3 \circ r_2 \circ r_1 = r \circ t$.
 - V Le réponse précédente exprime déjà $r_3 \circ r_2 \circ r_1$ comme une composée $t' \circ r$ pour r la réflexion par rapport à \mathcal{D} et t' une certaine translation; pour obtenir $r \circ t$ on peut prendre $t = r \circ t' \circ r$, ce qui est une translation (car l'application linéaire associée \overrightarrow{t} est égale à $\overrightarrow{r} \circ I \circ \overrightarrow{r} = I$). Mais on peut faire mieux en trouvant t tel qu'en plus $r \circ t = t \circ r$ (la translation et la réflexion commutent) ce qui veut dire que la translation est parallèle à l'axe de la réflexion; c'est la décomposition canonique d'une réflexion glissée. Cela sera réalisé si on peut transformer les trois réflexions en une réflexion r'_3 précédée par deux réflexions dans deux axes perpendiculaires à l'axe de r'_3 (donc parallèles entre eux, et produisant une translation parallèle à cet axe). Le petit jeu suivant produit le résultat voulu: on remplace le couple (D_1, \mathcal{D}_2) par un couple (D'_1, \mathcal{D}'_2) passant par le même point et avec le même angle orienté α entre elles (donc la composée de leurs réflexions produit la même rotation), et tel que $\mathcal{D}'_2 \perp \mathcal{D}_3$ (il est facile à voir que ceci est possible de façon unique), puis de la même façon on remplace le couple perpendiculaire $(\mathcal{D}'_2, \mathcal{D}_3)$ par un couple équivalent (perpendiculaire) $(\mathcal{D}''_2, \mathcal{D}'_3)$ tel que $\mathcal{D}''_2 \parallel \mathcal{D}'_1$. La composée $r'_3 \circ r''_2 \circ r'_1$ des réflexions par rapport à $\mathcal{D}'_1, \mathcal{D}''_2, \mathcal{D}'_3$ fournit alors la translation $t = r''_2 \circ r'_1$ et la réflexion $r = r'_3$ cherchées.

- 3 - **Fin.**