L'utilisation de tout document ou calculatrice est interdite

- 1. Soit $A, B, C \in \mathcal{A}$ un triangle dans un plan affine \mathcal{A} , donnant un repère affine $\mathcal{S} = (A, B, C)$. En termes de paramètres α, β, γ on définit les points $P = (0, \alpha, 1 \alpha)_{\mathcal{S}}, Q = (1 \beta, 0, \beta)_{\mathcal{S}}$ et $R = (\gamma, 1 \gamma, 0)_{\mathcal{S}}$.
 - a. Quels sont les lieux des points P, Q, et R, c'est-à-dire les ensembles de points qu'ils parcourent respectivement quand on varie les paramètres α, β, γ ?
 - b. On exclut les cas où l'un des points P, Q, R coïncide avec l'un des points A, B, C. Quelles sont les valeurs qu'il faudra alors exclure pour α, β , et γ ?
 - c. Donner une équation en ces variables qui exprime la condition que P, Q, et R soient alignés.
 - d. Donner des coordonnées barycentriques des milieux $\operatorname{bar}(A,P)$, $\operatorname{bar}(B,Q)$ et $\operatorname{bar}(C,R)$; montrer qu'ils sont alignés si et seulement si P,Q et R sont alignés. [On dit: "les milieux des diagonales d'un quadrilatère complet sont alignés". Le quadrilatère complet est formé par les côtés de A,B,C, et par la droite passant par P,Q et R; il compte 6 "sommets" A,B,C,D,E,F.]
 - e. Donner des coordonnées barycentriques des points $A' = Q + \overrightarrow{AR}$, $B' = R + \overrightarrow{BP}$, et $C' = P + \overrightarrow{CQ}$, et montrer que ces points aussi sont alignés si et seulement si P, Q et R le sont.
- 2. Dans un plan affine euclidien, on considère trois droites D₁, D₂, D₃, sécantes deux à deux. On note par s_i la réflexion orthogonale par rapport à D_i. La composée ρ = s₂ ∘ s₁ est une rotation de centre P avec {P} = D₁ ∩ D₂, et la composée f = s₃ ∘ s₂ ∘ s₁ = s₃ ∘ ρ est une isométrie indirecte (ou anti-déplacement). Or, il existe deux types d'isométrie indirecte: les réflexions (qui possèdent des points fixes) et des réflexions glissées (qui n'en ont pas; elles s'écrivent comme la composée d'une réflexion et d'une translation parallèle à l'axe de la réflexion). On va caractériser le type de f.
 - a. Montrer que si $\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3$ sont concourantes, alors f est une réflexion (orthogonale).
 - b. Réciproquement supposons que f soit la réflexion orthogonale par rapport à une droite \mathcal{D} . Montrer que $s_3 \circ f = \rho$ et en déduire que $P \in \mathcal{D}_3$, c'est-à-dire que $\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3$ sont concourantes.

Comme application de ce résultat, considérons un triangle A, B, C, et prenons pour $\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3$ des bissectrices des angles en A, B, C, respectivement. On rappelle qu'une telle bissectrice peut être interne (si la réflexion correspondante envoie par exemple la demi-droite [AB) vers [AC)) ou externe (la réflexion envoie [AB) vers la demi-droite complémentaire de [AC)).

- c. Montrer que (quel que soit le type des bissectrices) f envoie la droite $\mathcal{D}_{A,C}$ sur elle-même.
- d. Si les bissectrices $\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3$ sont toutes internes, montrer que \overrightarrow{f} agit sur $\overrightarrow{\mathcal{D}_{A,C}}$ comme -1.
- e. Conclure que dans ce cas $\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3$ sont concourantes.
- 3. Soit $\Gamma = \mathcal{S}(\Omega, r)$ un cercle dans le plan affine euclidien \mathcal{A} , de centre $\Omega \in \mathcal{A}$ et de rayon r > 0. Soit $A \in \mathcal{A}$ un point du plan quelconque. On appelle puissance de A par rapport à Γ le nombre $P_{\Gamma}(A) = d(A, \Omega)^2 - r^2$ (où $d(\cdot, \cdot)$ désigne la distance). On a donc $A \in \Gamma$ si et seulement si $P_{\Gamma}(A) = 0$.
 - a. Donner un argument montrant le fait (bien connu) qu'aucune droite de \mathcal{A} ne peut couper Γ en plus de deux points. [Vous avez le choix parmi plusieurs arguments simples, algébriques ou géométriques; il s'agit juste de trouver quelque chose qui soit mieux que "ça ce voit".]
 - b. Soit $P, Q \in \Gamma$ diamétralement opposés (donc $\overrightarrow{P\Omega} = \overrightarrow{\Omega Q}$). Montrer que $\langle \overrightarrow{AP}, \overrightarrow{AQ} \rangle = P_{\Gamma}(A)$.
 - c. Avec toujours $P \in \Gamma$, supposons que $\mathcal{D}_{A,P} \cap \Gamma = \{P,R\}$. Montrer que $P_{\Gamma}(A) = \langle \overrightarrow{AP}, \overrightarrow{AR} \rangle$. Qu'est-ce qu'on peut dire si la droite $\mathcal{D}_{A,P}$ est tangente à Γ en P?

On peut donc caractériser la puissance d'un point A par rapport à Γ comme la valeur constante de $\langle \overrightarrow{AS}, \overrightarrow{AT} \rangle$ pour toute paire de points S, T telle que $\mathcal{D} \cap \Gamma = \{S, T\}$ pour une droite \mathcal{D} passant par A.

- d. Soit $\Delta = \mathcal{S}(\Omega', s)$ un autre cercle, non concentrique à Γ (c'est-à-dire $\Omega' \neq \Omega$). On définit l'axe radical des cercles Γ et Δ comme l'ensemble $V = \{ A \in \mathcal{A} \mid P_{\Gamma}(A) = P_{\Delta}(A) \}$. Montrer que V est une droite orthogonale à $\mathcal{D}_{\Omega,\Omega'}$.
- e. Supposons que $\Gamma \cap \Delta = \{S, T\}$; montrer que $V = \mathcal{D}_{S,T}$. Qu'est-ce qu'on peut dire si $\Gamma \cap \Delta = \{S\}$?
- f. Supposons maintenant que $\Gamma \cap \Delta = \emptyset$. Soit \mathcal{C} un cercle quelconque qui coupe Γ et Δ chacun en deux points distincts, disons $\mathcal{C} \cap \Gamma = \{A, B\}$ et $\mathcal{C} \cap \Delta = \{C, D\}$, et tel que $\mathcal{D}_{A,B}$ et $\mathcal{D}_{C,D}$ ne soient pas parallèles (un tel cercle existe toujours, on l'admet). Montrer que si $\mathcal{D}_{A,B} \cap \mathcal{D}_{C,D} = \{S\}$, alors $S \in V$ (donc V pourra être construit comme la droite orthogonale à $\mathcal{D}_{\Omega,\Omega'}$ passant par S).