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1 Introduction

§1. Introduction.

1.1. Statement of the problem.

3.13 Problem. Describe the bijection of 3.8 combinatorially

in the case of the other classical groups.

T. A. Springer, [Spr2]

We consider certain classical algebraic groups G over an algebraically closed field k.

Associated with G is the set B of its Borel subgroups, which is endowed with the

structure of an irreducible algebraic variety, on which G acts by conjugation. For a

fixed unipotent element u ∈ G, let Bu denote the subvariety of B of Borel subgroups

fixed by u, which is in general reducible. These varieties Bu arise in the study of the

unipotent variety of G, and have been studied, amongst others, by Steinberg [St1],

[St2], [St3] and by Spaltenstein [Spa]. Any ordered pair of elements of B has a relative

position, which is an element of the Weyl group W of G. Similarly, an ordered pair

of irreducible subsets of B has a generic relative position, namely the relative position

of generically chosen elements of these subsets. The problem we shall focus on, is the

determination of the generic relative positions of irreducible components of Bu.

In the caseG = GLn, the irreducible components of Bu are parametrised by Young

tableaux, and their relative positions are computed by the well-known Robinson-

Schensted algorithm (which is described in appendix A), see [St3] and [Spa II.9.8].

We shall give analogous computations for groups G of type Bn, Cn, and Dn, when

char(k) 6= 2. A combinatorial parametrisation for the irreducible components of Bu
in these cases is given in [Spa II.6]; it is described in our §3. The parameters used

are similar to Young tableaux, but more complicated: they are built up from pairs

of adjacent squares rather than from individual squares, and they also involve certain

signs; we shall call these objects ‘signed domino tableaux’. The Weyl group W can

be explicitly represented as a hyperoctahedral group Hn (consisting of permutations

with signs), or in the case of type Dn as a subgroup of index 2 thereof. Therefore

we shall describe the generic relative positions of irreducible components of Bu in the

form of an algorithm that takes as arguments a pair of signed domino tableaux, and

yields a permutation with signs as result.

1.2. Notational conventions.

Paranotions, which designate constructs,

may now contain metanotions

and “hypernotions” have been introduced

in order to designate protonotions.

A. van Wijngaarden et al., [Wijn 0.4.4.a]

The symbols ‘⊂’ and ‘⊃’ will always denote strict inclusions of sets; for not necessarily

strict inclusions we shall write ‘⊆’ and ‘⊇’. The operations ‘∪’ and ‘∩’ will only be

applied to subsets of a given set; to unrelated sets we may apply the operation ‘∐’
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1.2 Notational conventions

forming their (external) disjoint union. When forming the (internal) union of subsets,

we may indicate the fact that they are actually disjoint by writing ‘⊎’ rather than ‘∪’.

Similarly, for Abelian groups, we write ‘+’ for the internal sum of subgroups, ‘×’ for

the direct product of groups, and ‘⊕’ for a sum of subgroups that is a direct sum.

For any finite set S, we denote its cardinality by #S. The 2-cyclic group {+1,−1}

will be denoted simply as 2. The image under a map f of a subset X of its domain will

be denoted f [X]; square brackets will also be used to indicate the inverse image f−1[y]

of either a single point or a subset of the codomain. The image of the whole domain

of f will be denoted Im(f), and when applicable the kernel of f will be denoted

Ker(f). For the logical connectives ‘and’ and ‘or’ we shall sometimes write ‘∧’ and ‘∨’

respectively, either because they occur in a formula, or in order to indicate that they

bind more strongly than other connectives that are expressed in words.

The set of natural numbers is denotedN, the set of positive natural numbersN>0.

A partition is an infinite weakly decreasing sequence of natural numbers ending with

zeros; the terms of this sequence are called the parts of the partition. The ith part

of a partition λ will be denoted λi, and if λi = 0 for i > m then λ may be denoted

as (λ1, . . . , λm). In this case λ is called a partition of the number n =
∑m

i=1 λi.

(A partition of a set S however, will as usual mean a set of mutually disjoint non-

empty sets whose union is S.) A partition λ determines a subset Y (λ) of N>0 ×

N>0, called its Young diagram, defined by (i, j) ∈ Y (λ) ⇐⇒ j ≤ λi; clearly λ is

determined by Y (λ). The elements of a Young diagram will be called its squares, and

we may correspondingly depict the Young diagram: the square (i, j) will be drawn

in row i and in column j. The transpose of λ will be denoted tλ, and is defined by
tλj = #{ i | λi ≥ j }; we have that Y (tλ) is the transpose diagram of Y (λ). We define

mj(λ) =
tλj −

tλj+1 = #{ i | λi = j }, and put m0(λ) =∞.

For any algebraic variety X, Con(X) denotes its set of connected components,

and Irr(X) its set of irreducible components. If G is an algebraic group, then G◦ ∈

Con(G) is the component containing the identity e, and Con(G) is identified with the

quotient group G/G◦. When G acts algebraically on X, then X is called a G-space;

if the action is transitive, then X is a homogeneous G-space. A morphism of varieties

between two G-spaces is called G-equivariant if it commutes with the action of any

g ∈ G. For any G-space X, and x ∈ X, the stabiliser of x in G is denoted Gx. The

normaliser of a subset Y ⊆ X is defined as NG(Y ) = { g ∈ G | g · Y = Y }, and the

centraliser of Y as CG(Y ) =
⋂

y∈Y Gy; when Y ⊆ G, conjugation action is implied.

For a vector space V , the identity transformation V → V is denoted 1V or just 1.

The linear span of a set of vectors is denoted 〈v1, . . . , vn〉. The projective space

associated with V is denoted P(V ); for a subspace S of V ,we have P(S) ⊆ P(V ). The

elements of P(V ) are lines in V , and although we shall often switch between these two

points of view, we shall always call these objects lines; on the few occasions that we

consider projective lines we shall include the adjective. If b is a bilinear form on V ,

we shall write sg(b) = +1 if b is symmetric, and sg(b) = −1 if it is alternating. Also,
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1.3 The group G

S⊥ will denote the subspace { v ∈ V | ∀s ∈ S: b(s, v) = 0 }.

1.3. The group G.

Let n ∈ N; three distinct cases will be considered, called case Bn, Cn and Dn respec-

tively, since G will be defined to be a specific group of that type. As the cases are

very similar, it is convenient to treat them all at once, but we shall explicitly note the

places where the definitions differ according to the case under consideration.

Let M be a vector space over an algebraically closed field k with char(k) 6= 2,

equipped with a basis {e−n, . . . , e0, . . . , en} in case Bn, or {e−n, . . . , e−1, e1, . . . , en}

in cases Cn and Dn. Define ε = 1 in the cases Bn and Dn, and ε = −1 in case Cn.

Define a non-degenerate bilinear form bM on M—with sg(bM ) = ε—by

bM (ei, ej) = 0 when i+ j 6= 0

bM (ei, e−i) = 1 = εbM (e−i, ei) for i ≥ 0.
(1)

Let G be the automorphism group of the vector spaceM equipped with bM ; according

to the case considered, G is isomorphic to either O2n+1, Sp2n or O2n, and indeed the

Dynkin type of G corresponds to the case we are in.

1.4. Flags and Borel subgroups.

A full isotropic flag f in M is a sequence f0 ⊂ f1 ⊂ · · · ⊂ fn of subspaces of M ,

where fn is isotropic with respect to bM , i.e., bM vanishes on fn × fn. We call the

spaces fi the parts of f . All parts are isotropic subspaces, fn is a maximal isotropic

subspace, and dim(fi) = i. Since we shall consider no other kind of flags, in the sequel

the term flag will always mean full isotropic flag. The set F of all such flags in M has

a natural structure of a (projective) algebraic variety, see for instance [Hu 1.8]. Each

map f 7→ fi onto the set of isotropic subspaces of dimension i ofM is a morphism; with

the obvious G-action, F becomes a homogeneous G-space. The set F is connected

in the cases Bn and Cn, while #Con(F) = 2 in case Dn. Since F is a homogeneous

G-space, we have Irr(F) = Con(F) in all cases. In case Dn, the component containing

f ∈ F is determined by fn. In fact, given f there is a unique flag f ′ ∈ F , that we

shall call its companion, with fi = f ′i for i < n and fn 6= f ′n; these two flags lie in

different connected components of F .

For any f ∈ F , the stabiliser G◦
f is a Borel subgroup of G. All Borel subgroups

are obtained in this way, since they are all conjugate. We choose a particular Borel

subgroup B = G◦
F , where F ∈ F is given by

F0 = {0}, F1 = 〈en〉, F2 = 〈en−1, en〉, . . . Fn = 〈e1, . . . , en〉 (2)

(note that F⊥
i = 〈e−n+i, . . . , en〉). The variety B of Borel subgroups of G is in bijection

with G◦/B via the map gB 7→ gB
def
= gBg−1; this makes B into an algebraic variety,
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1.5 Relative positions

and in fact a homogeneous G-space. The map F → B that maps f 7→ G◦
f is G-

equivariant and surjective; in cases Bn and Cn it is an isomorphism, and in case Dn

the fibres are pairs of companion flags. This allows us for most purposes to identify B

with one component of F ; for this we choose the embedding of B into the component

of F containing F (but note that in case Dn this embedding is only G◦-equivariant).

1.5. Relative positions.

We choose a maximal torus T ⊆ B of G, namely T =
⋂n

i=−nNG(〈ei〉)
◦. The

Weyl group of G is defined as W = NG◦(T )/CG◦(T ). According to Bruhat’s lemma,

we have G◦ =
⊎

w∈W BwB, from which it immediately follows that the orbits of the

diagonal G◦-action on (G◦/B)× (G◦/B) ∼= B × B are in bijection with W . Therefore

we define

O(w) = { (gB, gwB) ∈ B × B | g ∈ G◦ } for w ∈W . (3)

The sets O(w) form a partition of the set B × B, so we define for every pair of Borel

subgroups B′, B′′ ∈ B an element π(B′, B′′) ∈W by

w = π(B′, B′′) ⇐⇒ (B′, B′′) ∈ O(w). (4)

We call π(B′, B′′) the relative position of the Borel subgroups B′ and B′′.

Likewise, one can consider the diagonal G-orbits in F × F . Put B̃ = GF and

W̃ = NG(T )/CG(T ). Now in case Cn we have B̃ = B, since G = G◦; in case Dn

we also have B̃ = B, since any g ∈ G \ G◦ exchanges two elements of Con(F), and

therefore cannot stabilise F . In case Bn however, we have B̃ = 2×B. From these facts

it is easily deduced that G =
⊎

w∈W̃
B̃wB̃, and, since F ∼= G/B̃, that the diagonal

G-orbits in F × F are in bijection with W̃ . Define

Õ(w) = { (g · F, gw · F ) ∈ F × F | g ∈ G } for w ∈ W̃ . (5)

Since again this forms a partition of F×F , we define the relative position π(F ′, F ′′) ∈

W̃ of F ′, F ′′ ∈ F by

w = π(F ′, F ′′) ⇐⇒ (F ′, F ′′) ∈ Õ(w). (6)

One easily checks that this definition is compatible with that of the relative position

of Borel subgroups via the embedding of B in F .

In view of these facts, we shall from this point on concern ourselves only with the

relative positions of flags, and not of Borel subgroups. This is an advantage, because

it allows a more uniform treatment of the three cases considered, and also because our

actual computations will be expressed in terms of flags rather than of Borel subgroups.
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1.6 The hyperoctahedral group Hn

1.6. The hyperoctahedral group Hn.

We can describe W̃ explicitly as follows, showing that in all cases it is isomorphic to

the hyperoctahedral group Hn, which is the Weyl group of type Bn or Cn. Recall

that Hn equals the wreath product of Sn with the group 2. An element w ∈ Hn can

therefore be specified by a permutation p ∈ Sn, together with an n-tuple (δ1, . . . , δn)

of signs δi ∈ 2; hence we can represent w by the n-tuple of integers (w1, . . . , wn),

where wi = δip(i). Such sequences of integers can be characterised by
{
|w1|, . . . , |wn|

}
= {1, . . . , n}, (7)

and will be called signed permutations of n. For the simple reflections of Hn we take

s1, . . . , sn, where s1 is represented by (−1, 2, 3, . . . , n), and si is the transposition of

i− 1 and i (no minus signs) for i > 1. The corresponding Dynkin diagram of Hn is
s1 s2 s3 sn−1 sn
◦=====◦−−−−−◦−−−−· · ·−−−−◦−−−−−◦ ,

where the root lengths depend on whether Hn is viewed as Weyl group of type Bn

or Cn.

Now any w ∈ W̃ permutes the lines 〈e−n〉, . . . , 〈e−1〉, 〈e1〉, . . . , 〈en〉, and is deter-

mined by that permutation. Since this permutation is such that whenever w〈ei〉 = 〈ej〉

then w〈e−i〉 = 〈e−j〉, it is on its turn determined by the images of 〈e1〉, . . . , 〈en〉, and

the integers w1, . . . , wn defined by w〈ei〉 = 〈ewi
〉 satisfy (7). This defines a map

W̃ → Hn, which is an injective homomorphism of groups. Now we can find elements

s̃1, . . . , s̃n ∈ NG(T ) as follows, whose images in W̃ map to the simple reflections of Hn,

proving that the map is an isomorphism. For s̃1 define s̃1(e1) = e−1, s̃1(e−1) = εe1,

and in case Bn, s̃1(e0) = −e0; s̃1 fixes all other basis vectors ei. For i > 1, s̃i ex-

changes each of the pairs of basis vectors {ei, ei−1} and {e−i, e1−i}, while fixing all

other basis vectors. In cases Bn and Cn we have that all s̃i are in NG◦(T ), so W̃ ∼=W

and we have the standard isomorphism W
∼
→ Hn. On the other hand, in case Dn,

s̃1 6∈ G◦, and the simple reflections of W are the images si of s̃i for i = 2, . . . , n,

together with the image s′2 of s̃1s̃2s̃1, according to the (somewhat unusually labeled)

Dynkin diagram
s2 s3 s4 sn−1 sn
◦=====◦−−−−−◦−−−−· · ·−−−−◦−−−−−◦

s′2◦

.

Therefore, in this case, W can be viewed as a subgroup of index 2 of W̃ ∼= Hn.

1.7. Unipotent elements.

Let u be a unipotent element in G. We have u ∈ G◦ because det(u) = +1. Define J(u)

to be the partition of dim(M) whose parts are the sizes of the Jordan blocks of u

arranged in decreasing order. This is well-defined, and determined by the conjugacy

class of u in GL(M); we shall call J(u) the Jordan type of u. We have the following

important fact.
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1.8 Fixed point sets

1.7.1. Theorem. Let u, u′ ∈ G be unipotent elements with J(u) = J(u′). Then u

and u′ are conjugate in G.

Proof. This is proved for case Cn in [Spr1]; proofs for all cases can be found in [Spr-

St] and in [Wall]. Note that in case Dn this becomes invalid if we replace G by

G◦ = SO2n. �

Define signs εj ∈ 2 for j ∈ N by

εj = −ε(−1)
j . (8)

Then for all j with εj = −1 we have that mj(J(u)) is even. We shall see in the course

of §2 that this condition stems from the fact that non-degenerate alternating forms

only exist in even dimensions, and also, by explicit construction, that all partitions

of dim(M) that satisfy it actually occur as J(u) for some unipotent u ∈ G.

1.8. Fixed point sets.

Denote by Bu and Fu the fixed-point sets of u on the varieties B and F respectively.

Since B′ = NG◦(B′) for any B′ ∈ B, the variety Bu may alternatively be described

as the set of Borel subgroups containing u. These varieties are extensively studied

in [Spa], and since they will play a central rôle in our discussion, we reproduce the

facts that apply to our situation. In general Bu and Fu are reducible, so define

Su = Irr(Fu).

Let Zu = CG({u}) = Gu; this group acts on Bu, Fu, and Su. Contrary to the

case G = GLn, this centraliser is generally not connected, so put Au = Con(Zu).

Since Z◦
u acts trivially on Su, we have an action of Au on Su. A description of Su and

of the Au-action on it are given in [Spa II.6]. These descriptions are quite complicated,

and in view of their importance for our computations, we reproduce them in full in §3.

Our version will be a slightly modified one, to suit our particular need, and is also

restricted to the groups we are in fact considering (Spaltenstein treats many other

ones at the same time). At this point, we just state two fundamental geometric facts

about Bu and Fu.

1.8.1. Proposition. The variety Bu is connected.

Proof. See [Spa II.1.7]. �

It follows that #Con(Fu) = #Con(F), which is 1 or 2 depending on the case we are

in.

1.8.2. Proposition. All irreducible components of Fu have the same dimension.

Proof. The analogous statement for Bu is proved in [Spa II.1.12]; for Fu it directly

follows. �
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2 Structure of k[u]-modules

Before we proceed with a more detailed study of the situation, let us briefly

indicate the way in which we shall work with Fu. When n > 0, define αu to be the

Zu-equivariant map Fu → P(Ker(u− 1)) given by f 7→ f1. Also, for l ∈ Im(αu) and

f ∈ α−1[l], define a flag f↓ in the space l⊥/l, given by

f↓i = fi+1/l, for i = 0 . . . , n− 1, (9)

then f is determined by l = f1 and f↓. Now u induces a unipotent transformation u′

of l⊥/l, and we have f↓ ∈ Fu′ . In fact, the map f 7→ f↓ is an isomorphism α−1
u [l]

∼
→

Fu′ . This allows proofs of statements about the sets Fu to proceed by induction on

the rank n of G; this is the technique that will be used to establish our main results.

As we shall see below, Im(αu) consists of finitely many orbits of the Zu-action,

which is an important fact for such inductive proofs. It follows in particular that for

any σ ∈ Irr(Fu) there is a unique orbit U ⊆ Im(αu), such that α−1
u [U ] ∩ σ is dense

in σ, so in proving statements for flags f in a dense subset of σ, we may choose any

l ∈ U and assume f ∈ α−1
u [l]. It is important to note, however, that the fibre α−1

u [l]

inherits less symmetry from the action of Zu, than its isomorphic image Fu′ posesses

due to the action of Zu′ . Formulated more technically: the natural homomorphism

of the stabiliser group (Zu)l to Zu′ is not generally surjective (nor, for that matter,

injective). Due to this circumstance, it is for instance quite possible that Fu has

infinitely many Zu-orbits, and that some of its irreducible components do not contain

any dense orbits. Therefore, despite the straightforward nature of the inductive proofs,

some careful reasoning is often required.

§2. Structure of k[u]-modules.

2.1. Definitions.

Fixing u, we can make the vector spaceM into a module over the polynomial ring k[X],

by letting X act as u − 1 (and hence nilpotently). We shall encounter many similar

modules, so we define a specific class of such modules.

2.1.1. Definition. A k[u]-module N is a finite dimensional module over k[X], that

is equipped with a bilinear form b, such that

(1) X acts nilpotently,

(2) b is fixed by the action of X + 1, (i.e., b((X + 1)v, (X + 1)v′) = b(v, v′) for all

v, v′ ∈ N),

(3) sg(b) = ε.

Note that this definition depends via ε on the case we are considering, so when

discussing k[u]-modules we always assume that ε has a fixed value, even if G norM are

mentioned. It is clear that M equipped with bM is a k[u]-module. We introduce the

following notations to facilitate the discussion of k[u]-modules. If N is a k[u]-module,
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2.2 First results

then bN is its bilinear form, uN is the transformation of N given by the action of X+1,

and ηN = uN − 1N is given by the action of X. Clearly uN is unipotent and ηN is

nilpotent. A morphism of k[u]-modules f :N → N ′ is a morphism of k[X]-modules

satisfying bN (v, v′) = bN ′(f(v), f(v′)). The automorphism group of the k[u]-module N

will be denoted ZuN
, which is consistent with the notation Zu for N =M . The Jordan

type J(uN ) of uN will also be denoted simply as J(N). If bN is a non-degenerate form,

then we will also call N non-degenerate.

The most important way in which a new k[u]-module can be derived from M is

the following. Let L be some u-stable isotropic subspace of M , then L⊥ ⊆ M is a

u-stable subspace containing L, and since bM vanishes on L × L⊥, a bilinear form

is induced in L⊥/L, which is non-degenerate. Also, L⊥/L is a k[X]-module, and the

conditions of 2.1.1 are satisfied, so L⊥/L is a non-degenerate k[u]-module. For this

special case we write u[L], η[L] and b[L] as abbreviations for uL⊥/L, ηL⊥/L and bL⊥/L

respectively. We shall mostly consider this construction with L an isotropic line in

Ker(ηM ).

2.2. First results.

2.2.1. Lemma. Let N,N ′ be non-degenerate k[u]-modules with J(N) = J(N ′).

Then N and N ′ are isomorphic as k[u]-modules.

Proof. We obviously have dim(N) = dim(N ′). Since k is algebraically closed, it is

well-known that all non-degenerate bilinear forms b on the vector space N with sg(b) =

ε are equivalent, i.e., GL(N) acts transitively on the set of such forms. Therefore there

exists a linear isomorphism φ:N → N ′ that satisfies bN (n,m) = bN ′(φ(n), φ(m)).

Then u′ = φ−1 ◦ uN ′ ◦ φ is a unipotent transformation of N preserving bN . Since

J(uN ) = J(u′), we get from 1.7.1 that u′ = θuNθ
−1 for some linear automorphism θ

of N preserving bN ; then φ ◦ θ is a k[u]-module isomorphism N
∼
→ N ′. �

Fix a k[u]-module N , and write µ = J(N), η = ηN , and 〈x | y〉 = bN (x, y). From

2.1.1(2) we get

〈x | ηy〉+ 〈ηx | y〉+ 〈ηx | ηy〉 = 0 for x, y ∈ N . (10)

2.2.2. Lemma.

(a) For all c ∈ N we have Ker(ηc) ⊥ Im(ηc).

(b) For c ∈ N>0, x ∈ Ker(ηc+1) and y ∈ Im(ηc−1), we have 〈ηx | y〉 = −〈x | ηy〉.

Proof. We prove part (a) by induction on c. For c = 0 the statement is trivial,

so assume that c > 0 and the proposition is true for c − 1; let x ∈ Ker(ηc) and

y ∈ Im(ηc) be given, say y = ηy′ with y′ ∈ Im(ηc−1). Then from (10) we get

〈x | y〉 = 〈x | ηy′〉 = −〈ηx | y′〉 − 〈ηx | ηy′〉 = 0 by induction, since ηx ∈ Ker(ηc−1).

This proves part (a); part (b) follows immediately from (10) and (a). �

If N is non-degenerate, then it follows by considering dimensions that Ker(ηc)
⊥

=

Im(ηc) and Im(ηc)
⊥
= Ker(ηc).
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2.3 Analysis of Ker(η)

2.3. Analysis of Ker(η).

We shall be especially interested in the subspace Ker(η) of N . It has a filtration by

ZuN
-stable subspaces.

2.3.1. Definitions. Define for j ∈ N>0:

(1) Wj(N) = Ker(η) ∩ Im(ηj−1),

(2) Uj(N) = P(Wj(N)) \P(Wj+1(N)),

(3) Vj(N) =Wj(N)/Wj+1(N).

It is readily checked that we have dim(Wj(N)) = tµj and dim(Vj(N)) = mj(µ);

when mj(µ) = 0 then Uj(N) = ∅ and otherwise dim(Uj(N)) = tµj − 1.

For each j there is an isomorphism ψj : Ker(ηj)/Ker(ηj−1)
∼
→Wj(N) induced by

ηj−1. By 2.2.2(a) it follows that for x, y ∈ Wj(N), and with y′ any representative

of ψ−1
j (y), the expression 〈x | y′〉 has a value depending on x and y only; we denote

this value as 〈x | η1−j [y]〉. Again by 2.2.2(a) we find that if x ∈ Wj+1(N) then

〈x | η1−j [y]〉 = 0 for all y, and by repeated application of 2.2.2(b) for c = 1, . . . , j − 1

that 〈x | η1−j [y]〉 = εj〈y | η
1−j [x]〉. Therefore, we may define a bilinear form bj,N on

Vj(N) by

bj,N (x̄, ȳ) = 〈x | η1−j [y]〉, (11)

where the bars denote images in Vj(N); we have sg(bj,N ) = εj .

From this point on, we assume that N is non-degenerate.

2.3.2. Theorem. The bilinear form bj,N is non-degenerate on Vj(N).

This theorem explains why mj(µ) is even whenever εj = −1. To prove it, we need

only the first part of the following lemma. The full statement will be used below.

2.3.3. Lemma. There exists a decomposition N =
⊕

j Nj , where the Nj are mu-

tually orthogonal non-degenerate sub-k[u]-modules, and all parts of J(Nj) are equal

to j. Furthermore, if i > 0 and l ∈ Ui(N) are given, the decomposition can be chosen

such that l ⊆ Ni.

Proof. We may assume that dim(N) > 0. Let m = min { j | ηj = 0 }, and choose

a complementary subspace S to Ker(ηm−1). If i < m, then l 6⊆ Im(ηm−1), so

Ker(ηm−1) 6⊆ l⊥, and S may be chosen such that S ⊥ l. Now we take for Nm the

k[X]-module generated by S; one immediately sees that all parts of J(Nm) are equal

to m. Clearly we have Wm(Nm) = Wm(N) = ηm−1[S], so if i = m then l ⊆ Nm.

From the non-degeneracy of N we get that bm,Nm
is non-degenerate, from which

the non-degeneracy of Nm is deduced as follows. Let x ∈ Nm be nonzero, then

0 6= ηjx ∈ Wm(Nm) for certain j ∈ N, so there exists a y ∈ Nm with 〈ηjx | y〉 6= 0,

and by repeated application of 2.2.2(b) for c = 1, . . . , j, it follows that 〈x | ηjy〉 6= 0.

We therefore have N = Nm ⊕ N
⊥
m; if i < m then we also have l ⊆ N⊥

m since l ⊥ S

and l ⊆ Ker(η) = Im(η)⊥. The lemma now follows by induction, applied to N⊥
m. �
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Proof of 2.3.2. We have Wi(N) =
⊕

j≥iWi(Nj) for any decomposition as in the

lemma, and hence Vj(M) ∼= Vj(Nj) canonically, while Vj(Ni) = 0 when i 6= j.

Using such a decomposition it is sufficient to prove the theorem for Vj(Nj). We

have already shown that bm,Nm
is non-degenerate, and by the inductive construction

of the decomposition, we get the same for any bj,Nj
. �

Each l ∈ Uj(N) determines a line l̄ ⊆ Vj(N). We assign to l a type typ(l) in the

following way: if εj = −1, then l̄ is always an isotropic line, and we write typ(l) = (I−);

if εj = +1, then l̄ may be either an isotropic or a non-isotropic line, and we write

typ(l) = (I+) in the former case, and typ(l) = (N) in the latter. Accordingly, when

εj = +1, we further split up the sets Uj(N) into

U I
j (N) = { l ∈ Uj(N) | typ(l) = (I+) } (12)

and

UN
j (N) = { l ∈ Uj(N) | typ(l) = (N) }. (13)

When mj(µ) = 1 the set U I
j (N) is empty and of course both these sets are empty if

Uj(N) is so; otherwise we have dim(U I
j (N)) = tµj − 2 and dim(UN

j (N)) = tµj − 1.

When mj(µ) = 2, then #Con(U I
j (N)) = 2 since Vj(N) has 2 isotropic lines; in all

other cases these sets are irreducible (if non-empty). Clearly, the sets Uj(N), U I
j (N)

and UN
j (N) are stable under the action of ZuN

. The following fact will prove to be

very useful.

2.3.4. Theorem. Any orbit of the action of ZuN
on P(Ker(η)) is either equal to

Uj(N) for some j with εj = −1, or to U
I
j (N) or UN

j (N) for some j with εj = +1.

Proof. The point to prove is that ZuN
acts transitively on the indicated sets, so

let two elements l, l′ in one same set be given. There exists a decomposition of N

as in 2.3.3, with l ∈ Ui(N) as given element, and another one where l′ ∈ Ui(N) is

given. Since by 2.2.1 each of the summands in one decomposition is isomorphic to the

corresponding summand in the other, there is an automorphism of N that transforms

the first decomposition into the second. We are therefore reduced to the case that l

and l′ lie in the same summand Ni. Now Aut(Vi(Ni))—where the automorphisms are

those of a vector space equipped with the bilinear form bi,Ni
—is either a symplectic

group (if εi = −1), which acts transitively on Ui(Ni), or an orthogonal group (if

εi = +1), in which case U I
i (Ni) and U

N
i (Ni) are the two orbits of its action on Ui(Ni).

Therefore, the theorem follows from the following lemma.

2.3.5. Lemma. Let N be a non-degenerate k[u]-module such that all parts of J(N)

are equal to i. Then the natural homomorphism of groups ZuN
→ Aut(Vi(N)) is

surjective.

Proof. This is a special case of the more general results formulated in [Spr-St 2.22–

2.25], which show that there is in fact a subgroup C of ZuN
that is isomorphically

10
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mapped to Aut(Vi(N)); we sketch its construction for this particular case. Rather than

the nilpotent η we employ η′ = η(uN + 1)−1, which is well-defined since char(k) 6= 2

implies that uN +1 is invertible. This nilpotent (the Cayley transform of uN ) satisfies

〈η′x | y〉+ 〈x | η′y〉 = 0, (14)

which can be verified by computing 〈η′(uN + 1)x | (uN + 1)y〉 = 〈ηx | y〉 − 〈x | ηy〉

with the aid of (10), and similarly for 〈(uN + 1)x | η′(uN + 1)y〉; also η′ is centralised

by ZuN
. With some subspace S as in the proof of 2.3.3 we may decompose the vector

space N as
⊕i−1

j=0 η
′j [S], and we have η′(i−1)[S] = Wi(N) ∼= Vi(N). Now let C be the

normaliser of S in ZuN
; it is clear that C stabilises the given decomposition of N ,

and that the action of any z ∈ C on any of the summands determines its action

on all other summands. Using (14) one now easily shows that the homomorphism

C → Aut(Vi(N)) is bijective. � �

We return to the case of an arbitrary non-degenerate k[u]-module N again, and

let l ∈ Uj(N) be an isotropic line. We consider the formation of the non-degenerate

k[u]-module l⊥/l, and the way it is related to N . Clearly this can essentially depend

only on the Zu-orbit of l, i.e., on j and typ(l). We denote the projection l⊥ → l⊥/l

by Π.

2.3.6. Lemma. Put j′ = j − 1 if typ(l) = (N), and j′ = j otherwise.

(a) For i 6= j we have Wi(l
⊥) = Wi(N), and Wj(l

⊥) is a subspace of codimension 1

of Wj(N).

(b) We have l ⊆Wi(l
⊥) if and only if i ≤ j′.

(c) If i ≥ j′ then Π[Wi(l
⊥)] = Wi(l

⊥/l), while if i < j′ then Π[Wi(l
⊥)] is a subspace

of Wi(l
⊥/l) of codimension 1.

(d) If i ≤ j′ then Π−1[Wi(l
⊥/l)] ∩ Ker(ηl⊥) = Wi(l

⊥), and if i > j′ we have that

Π−1[Wi(l
⊥/l)] =Wi(l

⊥)⊕ l.

Proof. It follows from the definition of bjN that the image of Wj(l
⊥) in Vj(N) is l̄⊥,

where l̄ is the image of l. Choose a decomposition of N as in 2.3.3 with l ⊆ Nj ; this

induces a similar decomposition of each Wi(N). Since all summands except Nj are

contained in l⊥, and noting for the case i = j − 1 that Wj−1(Nj ∩ l
⊥) = Wj(Nj),

part (a) readily follows. Part (b) can be checked for both cases in the definition

of j′. For parts (c) and (d) we consider the spaces Ker(η) and Im(ηi−1) appearing

in the definition of Wi. It is immediate that Π[Im(ηil⊥)] = Im(ηi[l]) for any i, and

that Π[Ker(ηl⊥)] ⊆ Ker(η[l]). The latter inclusion is strict if j′ > 1, since then

Π−1[Ker(η[l])] is spanned by Ker(ηl⊥) and a line l̂ ⊆ Nj with η[l̂] = l (check

this for both cases in the definition of j′). We have Π[l̂] ∈ Uj′−1(l
⊥/l), and

Ker(η[l]) = Π[l̂] ⊕ Π[Ker(ηl⊥)]. It is now easy to derive parts (c) and (d). �

2.3.7. Corollary. For l ∈ Uj(N), the partition J(l⊥/l) is obtained form J(N) by

modifying it in the following way: if typ(l) = (N) then one part j is replaced by a

part j − 2, and otherwise two parts j are both replaced by a part j − 1.

11
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Proof. By comparing dimensions of spaces Wi, we get from 2.3.6 (using its notation)

that J(l⊥) is obtained from J(N) by decreasing a part j by 1, and from this J(l⊥/l)

is obtained by decreasing a part j′ by 1. The corollary follows. �

The results of 2.3.6 may also be interpreted in terms of the spaces Vi. In the

following, ‘natural’ means (Zu)l-equivariant, and the isomorphisms preserve the re-

spective bilinear forms.

2.3.8. Corollary. Let j′ and Π be as in 2.3.6; let l̄ be the image of l in Vj(N), and

if j′ > 1 let S be the image of Π[Wj′−1(l
⊥)] in Vj′−1(l

⊥/l), which has codimension 1

by 2.3.6(c). The statements involving S tacitly assume j′ > 1.

(a) The image Vj(l
⊥) of Wj(l

⊥) in Vj(N) equals l̄⊥.

(b) If typ(l) = (N), there are natural isomorphisms Vj(l
⊥/l) ∼= l̄⊥, Vj′−1(N) ∼= S,

and S⊥ ∼= l̄.

(c) If typ(l) 6= (N), there are natural isomorphisms Vj(l
⊥/l) ∼= l̄⊥/l̄ and Vj′−1(N) ∼=

S/S⊥.

(d) If i 6∈ {j, j′ − 1}, there is a natural isomorphism Vi(N) ∼= Vi(l
⊥/l).

Proof. (a) By 2.3.6(a) we have Wj+1(l
⊥) = Wj+1(N), so that Vj(l

⊥) is indeed a

subset of Vj(N); by definition it is the image of Wj(l
⊥). In the proof of 2.3.6(a)

we have seen that it equals l̄⊥. (b) By 2.3.6(c,d), Π induces an isomorphism

Vj(l
⊥)

∼
→ Vj(l

⊥/l) which is obviously natural, hence the first statement follows

from (a). Since Wi(N) = Wi(l
⊥) for i = j′, j′ − 1 and Π[Wj′(N)] = Wj′(l

⊥/l),

the second isomorphism is also induced by Π. For the third isomorphism, consider

the space q = Π−1[Ker(η[l])]/Ker(ηl⊥), which is represented by l̂ in the proof of

2.3.6. Now η defines an isomorphism q
∼
→ l ∼= l̄, while Π defines an isomorphism

q
∼
→ Vj′−1(l

⊥/l)/S ∼= S⊥ (S is non-degenerate), and these isomorphisms piece together

to a natural isomorphism of vector spaces. Since these spaces are 1-dimensional and

non-degenerate, this isomorphism can be modified by scalar multiplication in order

to preserve the bilinear form (using (10) one checks that the square of this scalar

should be −1). (c) We have j′ = j, so by 2.3.6(c) Π induces a surjective map

Vj(l
⊥) → Vj(l

⊥/l), whose kernel is easily seen to be l̄; therefore the first statement

follows from (a). Using the notation of (11), observe that 〈x | η2−j [y]〉 = 0 for all x ∈

Wj(N) and y ∈ Wj−1(l
⊥), which implies that 〈Π(x) | η2−j

[l] [Π(y)]〉 = 0, so the image

p of Π[Wj(N)] in Vj−1(l
⊥/l) is perpendicular to S. We have Wj(l

⊥/l) = Π[Wj(l
⊥)],

so dim(p) = 1 by 2.3.6(a,b), and p = S⊥. Therefore Π induces an isomorphism

Wj−1(l
⊥)/Wj(N)

∼
→ S/S⊥, and since Wj−1(l

⊥) = Wj−1(N), this establishes the

second isomorphism. (d) All cases are immediate from 2.3.6, except possibly i = j−1

when typ(l) = (N). In that case Wj(l
⊥) ⊕ l = Wj(N) ⊆ Wi(l

⊥) = Wi(N), so

we have a natural isomorphism Vi(l
⊥)/l̃

∼
→ Vi(N) for the image l̃ of l in Vi(l

⊥).

On the other hand l̃ is the kernel of the surjective map Vi(l
⊥) → Vi(l

⊥/l) induced

by Π, so we obtain an isomorphism Vi(N) ∼= Vi(l
⊥/l) in this case as well. �
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2.4. The group Au.

We give an explicit description of the component group Au of Zu. Define for j ∈ N>0

the groups Zu,j = Aut(Vj(M)) (as in 2.3.5), and Au,j = Con(Zu,j). We have either

Zu,j
∼= Spmj(λ) or Zu,j

∼= Omj(λ), according as εj = −1 or εj = +1. Consequently,

Au,j is trivial unless εj = +1 and mj(λ) > 0, in which case Au,j
∼= 2. Now there

is a natural homomorphism Aut(M) = Zu →
∏

j Zu,j , which by 2.3.3 and 2.3.5 is

surjective. We refer again to [Spr-St 2.22–2.25], where it is shown that the kernel of

this homomorphism is the unipotent radical of Zu, and hence connected. Composing

with the homomorphism
∏

j>0 Zu,j →
∏

j>0Au,j we therefore obtain a surjective

homomorphism Zu →
∏

j>0Au,j with kernel Z◦
u. This proves

2.4.1. Proposition. For any unipotent u ∈ G with J(u) = λ the group Au is

isomorphic to
∏

j>0Au,j , where Au,j is trivial unless εj = +1 ∧mj(λ) > 0, in which

case Au,j
∼= 2. �

In particular, Au is an Abelian group. Hence for N ∼= M we can canonically

identify AuN
with Au, regardless of the choice of isomorphism N

∼
→M . We shall not

bother to distinguish between these two groups, and shall denote it as Aλ in places

where no particular unipotent is specified, but only the Jordan type λ.

§3. The parametrisation of the irreducible components of Fu.

3.1. Fundamentals.

We shall study Fu using the morphism αu:Fu → P(Ker(ηM )) defined in 1.8. The

basic geometric fact that will be used is the following elementary

3.1.1. Lemma. Let a connected algebraic group Z, a Z-space Y , a homogeneous

Z-space X and a Z-equivariant map α:Y → X be given. For any x ∈ X there is a

bijection from Irr(Y ) to the set of Zx orbits in Irr(α−1[x]) that is given by φ:C 7→

Irr(C ∩ α−1[x]). The same is true when ‘Irr’ is replaced by ‘Con’ in all places.

Proof. Let C ∈ Irr(Y ) be given. Then it is a general property of morphisms (see

[Hu 4.1]) that each irreducible component σ of C ∩ α−1[x] (i.e., each σ ∈ φ(C)) has

dim(σ) ≥ r = dim(C) − dim(X). But since Z acts transitively on the set of fibres

of α, we must have dim(σ) = r. Therefore Z · σ = { z · y | z ∈ Z, y ∈ σ } ⊆ C has

dimension dim(C), so for any other σ′ ∈ φ(C) we have Z · σ′ = Z · σ. It follows that

Zx acts transitively on φ(C), and that Z · σ = C. If σ ⊆ σ̃ ∈ Irr(α−1[x]) then we

have Z · σ ⊆ Z · σ̃ which is irreducible, so σ = σ̃, which proves φ(C) ⊆ Irr(α−1[x]).

Therefore φ is indeed a map to the set of Zx-orbits in Irr(α−1[x]), and it is clearly

injective and surjective. The proof for connected components is entirely similar. �

Remark. A more geometric proof can be given, based on the fact that the map

Z×α−1[x]→ Y given by (z, y) 7→ z ·y is smooth. This is true because it is a pull-back

by α of the smooth map Z → X that maps z 7→ z · x.
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We shall use the following common notation. Given a closed subgroup H ⊆ Z

and a H-space S, the quotient of Z×S by the H-action h ·(z, s) = (zh−1, h ·s)—which

exists for any reasonable S—will be denoted as Z ×H S; it is a Z-space via the left

action of Z on the first factor of Z×S. With the natural injection S → Z×H S it has

the following universal property: any H-equivariant map from S to a Z-space X can

be uniquely extended to a Z-equivariant map Z ×H S → X. In particular it is up to

isomorphism the unique Z-equivariant bundle over Z/H whose fibre at the coset H is

S (as H-space).

Returning to Fu, fix l ∈ Im(αu), and let X = Zu · l be its orbit, which is as

described in 2.3.4. Let X◦ = Z◦
u · l be the connected component of X containing l, let

Y = α−1
u [X] and Y ◦ = α−1

u [X◦], and put u′ = u[l]. We have Y ∼= Zu ×
(Zu)l α−1

u [l],

and we can derive a similar expression for Irr(Y ) as Au-space, in which all groups and

sets are finite. We assume that Su′ ∼= Irr(α−1
u [l]) with its Au′ -action is known. Let K

be the image of (Z◦
u)l in Au′ , let H be the image of (Zu)l in Au, and H

′ the image

of (Zu)l in Au′ . We have a canonical homomorphism H → H ′/K, via which H acts

on the orbit set K\Su′ .

3.1.2. Lemma. There is an Au-equivariant bijection Irr(Y ) ∼= Au ×
H (K\Su′).

Proof. We can apply 3.1.1 to the restriction Y ◦ → X◦ of αu, and find that Irr(Y ◦)

is isomorphic to (Z◦
u)l\Su′ . The action of (Z◦

u)l on Su′ factors through its projection

onto K, so we obtain an isomorphism of sets with H-action Irr(Y ◦)
∼
→ K\Su′ . Any

z ∈ Zu that normalises X◦ (and hence also Y ◦) lies in the subgroup generated by

Z◦
u and (Zu)l, so H is the normaliser of Irr(Y ◦) in the action of Au on Irr(Y ).

It follows that Irr(Y ) is as described in the lemma. (Admittedly this description

seems more complicated than necessary in view of 2.4.1, but it does reflect the way

in which it is obtained.) �

We call an orbit X ⊆ Im(αu) good, if dim(Y ) = dim(X) + dim(α−1
u [l]) has the

maximal possible value, which is dim(Fu).

3.1.3. Lemma. Su = Irr(Fu) =
⊎

X Irr(α−1
u [X]), where X ranges over all good

orbits in Im(αu), and the bar denotes Zariski closure.

Proof. By 2.3.4 there are only finitely many orbits X in Im(αu), and by 1.8.2 the

elements of Irr(Y ) for Y = α−1
u [X] are irreducible components of Fu if and only

if dim(Y ) = dim(Fu), i.e., if X is good. The disjointness of the sets Irr(Y ) (i.e.,

the fact that no two sets Y share an irreducible component) is evident. �

We know the dimensions of all orbits X by 2.3.4; from these we obtain dim(Fu)

as follows. We may fill the Young diagram Y (λ) with natural numbers, inserting into

position (i, j) (i.e., column j of row i) the number
⌊
i−1
2

⌋
when εj = +1, and

⌊
i
2

⌋

when εj = −1 (the only importance of these numbers is that they make the following

lemma work). Let l ∈ X and λ′ = J(u[l]).
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3.1.4. Lemma. When Y (λ) is filled in this way with numbers, then

(a) dim(X) equals the sum of the numbers in the squares of Y (λ) \ Y (λ′), except

when X = UN
j (M) and mj−1(λ) > 0, in which case dim(X) is strictly less than

that sum,

(b) dim(Fu) is the sum of the numbers in all squares of Y (λ),

(c) X is a good orbit if and only if we have equality in (a).

Proof. Part (a) follows using 2.3.7, by separately checking the cases X = Uj(M),

X = U I
j (M) and X = UN

j (M); in the excepted case we have εj−1 = −1, and therefore

mj−1(λ) ≥ 2. Then (b) follows by induction on n, provided that we have equality

in (a) for at least one orbit X, which is clear since in the excepted case we have

j > 1 and Uj−1(M) 6= ∅. Part (c) is an immediate consequence of (a) and (b) �

We denote by Qu the union of all good orbits in Im(αu). By 3.1.3, α−1
u [Qu] is

dense in Fu. The condition given by 3.1.4 for being a good orbit can be reformulated

in the following simple form.

3.1.5. Proposition. Let l ∈ X and λ′ = J(u[l]). Then X is a good orbit if and only

if the two squares in Y (λ) \ Y (λ′) are adjacent (either horizontally or vertically). �

3.2. Some combinatorics: domino shapes and unsigned tableaux.

Inspired by the facts above, we introduce some combinatorial objects.

3.2.1. Definition. A domino shape is a pair p of adjacent squares, that has one

of the following three forms. According to the case applying, the type typ(p) ∈

{(I−), (I+), (N)} of p is also defined.

(1) p = {(i− 1, j), (i, j)} and εj = −1; then typ(p) = (I−).

(2) p = {(i− 1, j), (i, j)} and εj = +1; then typ(p) = (I+).

(3) p = {(i, j − 1), (i, j)} and εj = +1; then typ(p) = (N).

In each case we write π(p) = (i, j), indicating the lower right-hand square.

This definition is such that for any l ∈ Qu, and with λ′ = J(u[l]), we have that

p = Y (λ) \ Y (λ′) is a domino shape, and typ(p) = typ(l). We call p the domino

shape associated with l, or with its orbit X; conversely we call X the orbit in Im(αu)

associated with p.

Recall that the map f 7→ f↓ maps α−1
u [l] → Fu[l]

isomorphically. We define

inductively a dense subset F̃u ⊆ Fu. For n = 0 put F̃u = Fu, otherwise we have for

f ∈ α−1
u [l] that f ∈ F̃u if and only if l ∈ Qu and f↓ ∈ F̃u[l]

. So, for any f ∈ F̃u the

lines l = f1, f
↓
1, f

↓↓
1 etc. lie in good orbits in the respective images of αu, αu[l]

etc.

This information can be encoded into a combinatorial object.

3.2.2. Definition. An unsigned domino tableau t of shape λ is an assignment of

natural numbers to the squares of the Young diagram Y (λ), such that
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(1) 0 is assigned to square (1, 1) in case Bn, and it is not otherwise assigned to any

square;

(2) any other number is either assigned to two squares forming a domino shape or to

no squares at all;

(3) the numbers are weakly increasing both along the rows and the colums of Y (λ).

When t assigns a number m to some square, then it is said that that square is num-

bered m in t.

Condition (3) ensures that by omitting the two highest numbered squares we

again obtain another unsigned domino tableau. For parametrising Su, we only need

unsigned domino tableaux numbered with 1, . . . , n, and possibly 0. We shall call such

tableaux standard (there is no relation with the notion of standard Young tableaux

used elsewhere). Given f ∈ F̃u, we obtain a standard unsigned domino tableau

of shape λ by assigning n to each of the squares of the domino shape associated

with l = f1 and then inductively numbering the squares of Y (J(u[l])) according to

f↓ ∈ F̃u[l]
. We write t(f) for the resulting tableau. For any standard unsigned domino

tableau t put Fu,t = { f ∈ F̃u | t(f) = t }. Now 3.1.3 may be sharpened to

3.2.3. Lemma. Su =
⊎

t Irr(Fu,t), where t ranges over all standard unsigned domino

tableaux of shape λ. Furthermore for any such t we have Irr(Fu,t) = Con(Fu,t).

Proof. Using the definition of Fu,t the first part follows by induction from 3.1.2

and 3.1.3. The second part is also proved by induction: a single orbit X is involved in

the induction step, and 3.1.1 can be applied to each of its connected components. �

Remarks. We have split Fu into F̃u and its lower-dimensional complement, and F̃u

is further dissected into equal dimensional parts Fu,t; a few comments on the nature

of this division are in place. First of all, although all these parts are Zu-stable, the

division is rather ad hoc from a purely geometric viewpoint; this is due to our choice

of analysing Fu by means of αu. For instance, for a flag f ∈ F̃u that lies on the

intersection of irreducible components of Fu, the value of t(f) will correspond to

that of generic flags of exactly one of the intersecting components. There needn’t be

anything singular about flags in the complement of F̃u, in fact we may have F̃u 6= Fu

even when Fu is a smooth irreducible variety; the only thing ‘wrong’ with such flags

is that they do not fit into the scheme of assigning unsigned tableaux to flags. (In the

analogous construction for Dynkin type An, a Young tableau can be assigned to all

flags in Fu, so there is no need to define F̃u.)

On the other hand the division of F̃u is such that the individual parts Fu,t are more

well behaved than the (union of) irreducible components they lie in. For instance we

cannot prove that the irreducible components of Fu are always smooth (in fact we

do not believe this is true), but it is not difficult to prove the smoothness of Fu,t.

Another example is given by the second part of 3.2.3, which would not be true if we

replaced Fu,t by Fu,t, as we shall see in examples at the end of this section.
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3.3 More combinatorics: signed tableaux and clusters

If for σ ∈ Su and an unsigned domino tableau t we have σ ⊆ Fu,t, then we write

t = t(σ); this is well-defined by above lemma. Also put Su,t = {σ ∈ Su | t(σ) = t },

which is in bijection with Con(Fu,t). Clearly Su,t is closed under the action of Au;

however the action need not be transitive on Su,t. Extra data have to be given for a

complete parametrisation of Su; these will be provided by adding signs to the domino

tableaux.

3.3. More combinatorics: signed tableaux and clusters.

In order to complete the parametrisation of Su, we compute the groups K, H, and H ′

of 3.1.2. Let a line l ∈ Uj(M) ∩ Qu be given, and put u′ = u[l]. For each non-trivial

factor Au,i of Au (see 2.4.1), we denote its generator by gi, and similarly write g′i for

the generator of any non-trivial factor Au′,i of Au′ . In case Cn we also put g′0 = e.

3.3.1. Lemma. The groups H, H ′ and K in 3.1.2 satisfy

(a) H = Au unless typ(l) = (I+) and mj(λ) = 2, in which case H is generated

by { gi | i 6= j }.

(b) H ′ = Au′ unless typ(l) = (I−) and mj−1(λ) = 0, in which case H ′ is generated

by { g′i | i 6= j − 1 }.

(c) K = {e} unless typ(l) = (N) and mj(λ) > 1, in which case K is the 2-cyclic

subgroup of Au′ generated by g′jg
′
j−2.

(d) The canonical homomorphism H → H ′/K maps gi to g′iK for all i, except for

i = j if typ(l) = (N) and mj(λ) = 1, in which case gj is mapped to g′j−2K.

Proof. Throughout the proof we use the description of Au (and of Au′) in 2.4. Now

with the description of the orbit Zu · l in 2.3.4, part (a) follows from the fact that H is

the stabiliser—in the action of Au on Con(Zu · l)—of the component containing l. For

the other parts we consider the linear transformations that some z ∈ (Zu)l induces

in the vector spaces Vi(M) and Vi(l
⊥/l); by the description of Au the corresponding

determinants determine the image of z in Au and Au′ respectively. Using a decom-

position as in 2.3.3, and considering particular elements z that centralise Nj , we may

check parts (b) and (d) in as far as generators gi and g
′
i are concerned with i 6= j.

For the remainder of the proof we use 2.3.8, and its notation, with N = M .

For i 6∈ {j, j′ − 1} the natural isomorphism of 2.3.8(d) ensures that z induces

transformations with the same determinant in Vi(M) and in Vi(l
⊥/l). If typ(l) = (N),

then z preserves the decompositions Vj(M) = l̄⊕l̄⊥ and (if j ≥ 3) Vj−2(l
⊥/l) = S⊥⊕S,

and there exists some z ∈ (Zu)l that acts as −1 on l̄. Now using 2.3.8(b) the remaining

statements for this case are easily verified. When typ(l) 6= (N) the isomorphisms

of 2.3.8(c) allow us to apply the following easy fact: if V is a vector space equipped

with a non-degenerate symmetric or alternating bilinear form, ζ ∈ Aut(V ) and p ⊂ V

is an isotropic line normalised by ζ, then for the induced automorphism ζ ′ ∈ Aut(p⊥/p)

we have det(ζ ′) = det(ζ) (where we put det(ζ ′) = +1 if p = p⊥). We conclude that

in this case there is a canonical isomorphism H
∼
→ H ′, which completes the proof. �
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3.3 More combinatorics: signed tableaux and clusters

Using this lemma we shall construct a combinatorial model of Su as a set with

Au-action. We need a number of preliminary definitions. Define a domino d to be

an object comprising the following data: a domino shape supp(d) called its support;

a number |d| ∈ N>0 called its entry ; and an element sg(d) of {‘+’, ‘−’, ‘◦’} called its

sign, with sg(d) 6= ‘◦’ if and only if typ(supp(d)) = (I+). We abbreviate typ(d) =

typ(supp(d)) and π(d) = π(supp(d)). The sign ‘◦’ stands for ‘absent’, and π(d) is

called the position of d; when π(d) = (i, j) we write ρd = i and κd = j, called the row

and column of d.

For the orbit in Im(αu) associated with supp(d), which is either UN
j (M), U I

j (M)

or Uj(M) according as typ(d) = (N), (I+) or (I−), we shall write Ud(M) for short.

Since a domino is completely determined by its position, type, entry and sign, we

define an operation ‘dom’ by

d = dom
(
π(d), typ(d), |d|, sg(d)

)
. (15)

A domino d is said to lie at the periphery of a partition λ if supp(d) ⊆ Y (λ) and

Y (λ) \ supp(d) is a Young diagram Y (λ′) for some other partition λ′.

Dominoes can be put together into signed domino tableaux, that we shall mostly

call just tableaux for short. A domino tableau T is simply a list of dominoes with

disjoint supports, ordered by decreasing entries, such that assigning |d| to the squares

of supp(d) for every domino d occurring in T , and 0 to square (1, 1) in case Bn, we

obtain an unsigned domino tableau of some shape λ, denoted |T |. We call λ the shape

of T , and write sh(T ) = λ and supp(T ) = Y (λ).

The most natural way to represent a tableau is to draw a diagram, as is sug-

gested by the terminology used. Each domino is represented by a rectangle occu-

pying the two squares of its support, in which both its entry and its sign (unless

it is ‘◦’) are written; in case Bn there is also a single square at (1, 1) with ‘0’ in

it. In this way the type of the dominoes and their order in the tableau are implic-

itly specified, and one may even deduce to which case the tableau applies. For in-

stance ‘
�

1
�

2
�

3 ’ is a tableau applying to case C3, which consists of the list of dominoes(
dom((1, 4), (N), 3, ‘◦’), dom((2, 2), (I+), 2, ‘+’), dom((2, 1), (I−), 1, ‘◦’)

)
(drawing di-

agrams for individual dominoes is not practical), and
�

0

�

1
�

2 is a tableau applying to

case B2. We draw rather tiny diagrams since we use them as formulae, not as illus-

trations.

For recursive definitions involving tableaux we adopt the following notation. The

trivial tableau consisting of an empty list of dominoes will be denoted ⊙, and a tableau

consisting of a list starting with a domino d, followed by a remaining list T of dominoes

(which itself is a tableau) will be denoted d : T (so the first tableau depicted above

could be written as dom((1, 4), (N), 3, ‘◦’) :
�

1
�

2 ). The ith domino occurring in the

tableau T will be denoted Ti; if T 6= ⊙ the leading domino is the domino T1, which

has the highest entry in T , and lies at the periphery of sh(T ). When T = d : P ,
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3.3 More combinatorics: signed tableaux and clusters

we shall write P = T ↓ (the down-arrow means “remove the leading domino”) so

we have T = T1 : T ↓; the operator ‘:’ associates to the right, so that we may also

write T = T1 : T2 : T ↓↓ when T has at least 2 dominoes. This notation will be

seen to be in accordance with that defined for flags in (9). Note that in case Bn

we have supp(⊙) = {(1, 1)}, and supp(⊙) = ∅ in the other two cases; in all cases

supp(d : T ) = supp(d) ⊎ supp(T ). We define Tλ as the set of all tableaux T with

sh(T ) = λ and such that |T | is standard.

The dominoes in a tableau T are partitioned into clusters, as defined presently.

This is needed to express the merging of irreducible components in passing from fibres

to the whole space, as specified by 3.1.2 when K is non-trivial. To simplify the

definitions, we adjoin a “dummy” domino 0 to those of T in cases Bn and Cn. So

let D = {T1, . . . , Tn} be the set of dominoes appearing in T , and define DT = D in

case Dn and DT = D ∪ {0} otherwise. The clusters of T will be subsets of DT . To

the jth column of supp(T ) we shall associate a cluster of T if εj = +1 and supp(T )

has at least one row of length j; every domino whose support contains a square at the

right end of such a row will appear in that cluster. For convenience we also associate

a cluster to j = 0 in case Cn; the dummy domino 0 appears in that cluster. The set

of such columns j depends only on λ = sh(T ), so define

Bλ = { j ∈ N | εj = +1 ∧mj(λ) > 0 } (16)

(recall that m0(λ) =∞). The association of clusters to columns is expressed as a map

bT :Bλ → CT , where CT is the set of clusters of T , which is a partition of the set DT .

We now inductively define CT and bT . For T = ⊙ they are defined in the only

possible way. Now assume T = d : T ↓, and put λ′ = sh(T ↓) and j = κd. Define I to

be the subset of Bλ′ of columns j for which mj(λ
′) differs from mj(λ); more formally

I =





{j} ∩Bλ′ if typ(d) = (I+)

{j − 1} if typ(d) = (I−)

{j, j − 2} ∩Bλ′ if typ(d) = (N).

(17)

Clearly #I ≤ 2. Now adding the domino d to T ↓, the clusters associated to the

columns in I are merged to a cluster of T , to which d is also added; the remaining

clusters are unaltered. If I = ∅ then {d} ∈ CT forms a singleton cluster. Formally we

have

CT =
{
{d} ∪

⋃

i∈I

bT↓(i)
}
∪
(
CT↓ \ { bT↓(i) | i ∈ I }

)
. (18)

For each x ∈ DT , the cluster containing it is denoted cl(x). Finally bT is defined by

bT (i) =

{
cl(d) if i ∈ I or i = j

bT↓(i) otherwise.
(19)

Remarks. The condition I = ∅ corresponds to H 6= Au in 3.3.1(a). Two clusters

of T ↓ are actually merged if and only if #bT↓ [I] = 2, i.e., if I = {j, j − 2} and
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3.3 More combinatorics: signed tableaux and clusters

bT↓(j) 6= bT↓(j−2); as we shall see this corresponds to a non-trivial groupK in 3.3.1(c)

whose action in 3.1.2 is also non-trivial. The map bT is not necessarily surjective, since

if typ(d) = (I−) we might have j − 1 6∈ Bλ; this corresponds to H
′ 6= Au′ in 3.3.1(b).

Clusters that are not in the image of bT will be called closed (in T ), the others

will be called open. Clearly any closed cluster in T ↓ is also a closed cluster in T .

Each cluster—with the possible exception of cl(0)—contains at least one domino of

type (I+). When clusters are drawn inside their tableau, the squares they occupy

form a subset of Y (λ) that is ‘connected’ via pairs of adjacent squares. In cases Bn

and Cn, cl(0) is always an open cluster.

The definition of clusters is most easily understood by computing them for some

examples. So one should verify that, of the two tableaux drawn before, the first has

two clusters, one containing the dominoes numbered 2 and 3, the other containing 0

and the domino numbered 1; the second has only one cluster, which is cl(0). Not only

the positions of the dominoes is relevant, their order is so as well. E.g., for
�

0

�

1
�

2

the

only cluster is cl(0), but in
�

0
�

1

�

2 the domino numbered 2 forms a singleton cluster.

However, by adding a third domino to the latter tableau, forming
�

0
�

1

�

2
�

3 , we again

obtain a tableau whose only cluster is cl(0), exemplifying the merging phenomenon

mentioned above. All the clusters encountered so far are open, but
�

1

�

2 is a tableau

(in case D2) whose sole cluster is closed. Clusters can get pretty complex, and

�

1

�

2

�

3

�

4

�

5

�

6
�

7

�

8

is a tableau in case C8 where cl(0) contains all dominoes except those numbered

4 and 5, so it actually surrounds a (necessarily closed) cluster. In this example the

order of the numbers 3 and 4 and of the numbers 5 and 6 is crucial.

It is clear that the partitioning of the dominoes in a tableau T into clusters

depends only on |T |. More precisely, when |T | = |T ′| there is a bijection CT → CT ′ ,

such that the cluster of Ti is mapped to the cluster of T ′
i for all i; we shall call the

image of a cluster of T under this bijection the corresponding cluster of T ′.

3.3.2. Definition. Two tableaux T, T ′ are called equivalent, written T ∼ T ′, if

|T | = |T ′|, and for each of the clusters of T that is not equal to cl(0), the product of

the signs of dominoes of type (I+) in that cluster is the same as the product of those

signs in the corresponding cluster of T ′. We write [T ] for the equivalence class of T ,

and define Sλ = { [T ] | T ∈ Tλ } and Sλ,t = { [T ] ∈ Sλ | |T | = t }.

Put Ξλ = { r | λr ∈ Bλ }; we define for r ∈ Ξλ and any T with sh(T ) = λ,

a tableau ξr(T ), obtained by changing the sign of the first (i.e., highest numbered)

domino of type (I+) in T whose support contains a square in row r (if such a domino

exists), and leaving everything else unchanged. It is easily verified that such a domino,

if it exists, must lie in the cluster bT (λr). Note that neither |T | nor the signs in
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3.4 Standard k[u]-modules

closed clusters are affected by ξr. Any ξr maps equivalence classes of tableaux into

equivalence classes, and if λr = λr′ for r, r′ ∈ Ξλ then ξr and ξr′ act identically

on equivalence classes. Since by 2.4.1 Aλ is isomorphic to the elementary 2-group

generated by Bλ\{0} (i.e., the product 2×· · ·×2 with one factor for each j ∈ Bλ\{0}),

we may define an action of Aλ on Sλ by gλr
· [T ] = ξr · [T ]. This action can also be

characterised be the fact that gi changes the product of signs of the cluster bT (i), and

of no other cluster (in case that cluster is cl(0), gi has no effect at all, since the sign

in that cluster is “ignored” by 3.3.2).

3.3.3. Lemma. For any unipotent u ∈ G with J(u) = λ there exists a bijection

Sλ → Su that is Au-equivariant and maps Sλ,t to Su,t for each unsigned domino

tableau t.

Proof. By induction on the rank n, we establish the existence of appropriate bijec-

tions Sλ,t → Su,t for each unsigned domino tableau t, using 3.1.2 and by comparing

3.3.1 with the definitions (17), (18) and (19). The case n = 0 is trivial, so assume

n > 0. Choose a tableau T = d : T ↓ with |T | = t, and a line l ∈ Ud(M). Let u′ = u[l],

λ′ = J(u′) = sh(T ↓), t′ = |T ↓| and let an Au′ -equivariant bijection Sλ′,t′ → Su′,t′ be

given by induction. Let H, H ′ and K be as given by 3.3.1, and let I be given by (17);

it depends only on t.

First consider the case I = ∅, which is equivalent toH 6= Au. In this caseH ∼= Au′

and Au
∼= Au,j ×H, so 3.1.2 states that Su,t

∼= 2× Su′,t′ , where Au,j acts on the first

factor and H on the second. From the definitions it follows that also Sλ,t
∼= 2× Sλ′,t′

with similar Au-action, establishing the induction step in this case.

Next consider the case #I = 2, which is equivalent to K 6= {e}, so 3.1.2 gives

Su,t
∼= K\Su′,t′ . On the other hand the generator g′jg

′
j−2 of K acts on Sλ′,t′ by

changing the product of signs in each of the two clusters (corresponding to) bT↓(j)

and bT↓(j − 2); in case those two clusters coincide, the action of K is trivial. Also

the map Sλ′,t′ → Sλ,t given by [T ′] 7→ [d : T ′] is a surjection, and by (18) its fibers

are precisely the K-orbits in Sλ′,t′ . Therefore we get a bijection Sλ,t → Su,t that is

Au-equivariant by 3.3.1(d) and (19), proving the induction step for this case.

In the remaining case #I = 1 and Au
∼= H ′ ⊆ Au′ , so by (18) the map

[T ′] 7→ [d : T ′] is a bijection Sλ′,t′ → Sλ,t, and by 3.1.2 there is a bijection Su,t → Su′,t′ .

We therefore get a bijection Sλ,t → Su,t, and by 3.3.1(d) and (19) it is Au-equivariant,

which completes the proof. �

3.4. Standard k[u]-modules.

The bijection established in 3.3.3 is not uniquely determined. For instance, in the case

I = ∅ there are two possible bijections Sλ,t → Su,t that are compatible with the given

bijection Sλ′,t′ → Su′,t′ , and since this situation may arise at several points of the

inductive construction, there is a considerable amount of freedom of choice. (It may
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3.4 Standard k[u]-modules

seem that in the case mentioned there is a canonical choice for the bijection, since the

same group 2 appears in the expressions for Sλ,t and Su,t, but the identification of

Su,t with 2× Su′,t′ depends on the choice of l ∈ Ud(M).)

In fact it is possible to choose the bijection in such a way that a specific element

of Sλ,t (e.g., the class of the tableau containing no ‘−’-signs) is mapped to any chosen

element of Su,t. This is particularly unsatisfactory because, due to closed clusters,

the action of Au on Sλ,t (or on Su,t) need not be transitive. However, at the points

in the inductive process where the choices are actually made, the action of Au does

interchange the two possibilities (because newly formed clusters are initially open).

Consequently, there is no way to specify these individual choices during the inductive

process in a way that is invariant under automorphisms of M . (Apparently, some

choices contained in the induction hypothesis do have an eventual effect that is in-

variant under such automorphisms, but to specify this choice we would have to endow

l⊥/l with more structure than that of k[u]-module alone, representing the specific way

in which it is a subquotient ofM , and such extra information would interfere with the

induction.)

We shall resolve this difficulty, by constructing for each occurring Jordan-type λ

a particular standard k[u]-module Mλ with J(Mλ) = λ, and then—with u = uMλ
—

specifying a standard parametrisation Sλ
∼
→ Su. Then a parametrisation Sλ

∼
→ Su

is obtained after choosing an isomorphism M
∼
→Mλ; the remaining indeterminacy is

inevitable, due to the action of Au. In the standard k[u]-modules, we shall also define

certain special lines in Ker(η).

We first construct basic k[u]-modules Mj with J(Mj) = (j), where εj = +1.

The underlying k[X]-module of Mj is the vector space kj with X acting on te basis

e1, . . . , ej by X · e1 = 0 and X · ei = ei−1 for 1 < i ≤ j. It remains to define bMj
,

which is done inductively. The case j = 0 (for ε = −1) is trivial, while for j = 1

(ε = +1) we define bM1
(e1, e1) = 1; otherwise assume that Mj−2 has already been

defined. Now bMj
is determined such that (a) it makes Mj into a non-degenerate

k[u]-module, which implies in particular that 〈e1〉
⊥
= 〈e1, . . . , ej−1〉, and (b) the k[X]-

module isomorphism 〈e1〉
⊥
/〈e1〉 → Mj−2 sending the coset of ei to ei−1 (1 < i < j)

becomes a k[u]-module isomorphism. It is easily checked that these requirements may

be met—indeed they do not completely determine bMj
, and we might impose further

conditions like ej ⊥ ej in Mj for j > 1—but it suffices that Mj is chosen once and for

all. The special line inMj is 〈e1〉, which is of type (N). We also define two special lines

in the k[u]-module Mj ×Mj which, as we shall see, may be written M(j,j), namely

the elements of U I
j (M(j,j)) (so these are of type (I+)). Explicitly, these lines are

l+ = 〈(e1, ie1)〉 and l− = 〈(e1,−ie1)〉, where i denotes one fixed solution of x2 = −1

in k.

For εj = −1 we also define basic k[u]-modules namedMj,j , which have J(Mj,j) =

(j, j) (the minimal Jordan type possible with a part j). They are not defined directly,

but in terms of the previously defined modules: Mj,j is defined as a subquotient
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module ofM(j+1,j+1), namely l⊥+/l+. The image (l+⊕ l−)/l+ of Ker(ηM(j+1,j+1)
) is the

unique special line in Mj,j ; it is of type (I−). Calling this special line p, note that if

j > 1 there is a canonical isomorphism p⊥/p
∼
→M(j−1,j−1), under which Ker(ηMj,j

)/p

corresponds to the special line l+ in M(j−1,j−1).

Now let λ be an arbitrary partition such that mj(λ) is even for all j with εj = −1.

The Young diagram Y (λ) can be partitioned in a unique way into rows of length j

with εj = +1 and pairs of adjacent rows of length j with εj = −1. According to this

partitioning we define Mλ as the product of the following modules: for each row of

length j with εj = +1 a factor Mj , and for each pair of adjacent rows of length j with

εj = −1 a factor Mj,j . For each of these summands of Mλ there is an automorphism

that acts as−1 on that summand and as 1 on all other summands. This automorphism

will be denoted χr for a summand Mj corresponding to a part consisting of a single

row r of Y (λ), and χr,r+1 for a summand Mj,j corresponding to a part consisting of

two rows r and r + 1.

The special lines in Mλ are defined such that they correspond precisely to the

dominoes at the periphery of λ, and have the same type as that domino. Let d be

such a domino, and let j = κd, then supp(d) meets 1 or 2 rows of Y (λ), of length j,

and there is a corresponding summand of Mλ of the form Mj , or M(j,j) with εj = +1

(when typ(d) = (N) respectively (I+)), or Mj,j with εj = −1 (when typ(d) = (I−)).

We define the special line in Mλ belonging to d to be a special line of type typ(d)

in that summand as defined above; in case typ(d) = (I+) this leaves us the choice

between l+ and l−, of which we choose lsg(d).

For the special line p in Mλ belonging to a domino d, there is a canonical iso-

morphism p⊥/p
∼
→ Mλ′ , where Y (λ′) = Y (λ) \ supp(d). This only needs elucidation

when sg(d) = ‘−’. In that case we use the automorphism χρd
of Mλ—which maps

l− to l+—to transform the canonical isomorphism l⊥+/l+
∼
→Mλ′ into an isomorphism

l⊥−/l−
∼
→ Mλ′ . When a flag f in p⊥/p corresponds to f ′ ∈ Mλ′ under this canonical

isomorphism, we shall write f ≃ f ′. Now for any T ∈ Tλ a flag FT ∈ Fu,|T | is defined

as follows. If T = ⊙ there is only one flag possible. Otherwise αu(FT ) is the special

line p belonging to the domino T1, and F ↓
T ≃ FT↓ . These flags have the following

properties, with ξr as defined below 3.3.2.

3.4.1. Proposition.

(a) The set {FT | T ∈ Tλ } is stable under any of the automorphisms χr and χr,r+1.

(b) Any χr(FT ) lies in the same component of F
u,|T | as Fξr(T ), and any χr,r+1(FT )

lies in the same component as FT .

(c) If T ∼ T ′, then FT and FT ′ lie in the same component of F
u,|T |.

Proof. We apply induction on T ∈ Tλ. The case T = ⊙ is trivial; so let T = d : T ↓,

and assume that the proposition is true for λ′ = sh(T ↓). Let χ = χr or χr,r+1 be

given, and put p = αu(FT ). If supp(d) doesn’t meet the corresponding row or rows

of Y (λ), then p is stabilised by χ, and the summand of Mλ on which χ acts as −1 is
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unaffected by passing to p⊥/p, whence (a) and (b) follow from the induction hypothesis.

Otherwise we distinguish three cases. If χ = χr,r+1 then typ(d) = (I−) and ρd = r+1;

p is stabilised by χ, and χ(FT )
↓ ≃ χr ◦χr+1(FT↓), which proves (a) by induction; (b)

follows from χ ∈ Z◦
u
. If typ(d) = (N) then χ = χr stabilises p, and χ(FT )

↓ ≃ χr(FT↓),

which by induction lies in the same component as Fξr(T↓) ≃ Fξr(T )
↓, proving (a)

and (b). If typ(d) = (I+) then χ = χr and ρd ∈ {r, r + 1}. If ρd = r, then we

get χr(FT ) = Fξr(T ) immediately from the definitions, while if ρd = r + 1 we have

αu(χr(FT )) = αu(Fξr(T )) and χr(FT )
↓ = χr,r+1(Fξr(T )

↓
), which proves (a) and (b).

To prove (c), let T ′ ∼ T be given. If T ′
1 = d and T ′↓ ∼ T ↓, then (c) follows

directly from the induction hypothesis. Otherwise put (r, j) = π(d); if T ′↓ 6∼ T ↓

then we must have typ(d) = (N) and mj(λ) > 1, while T ′
1 6= d can only be due to

differing signs when typ(d) = (I+) and mj(λ) > 2. In the first case we must have

T ′↓ ∼ ξr ◦ ξr−1(T
↓) = ξr ◦ ξr−1(T )

↓, so by induction we may reduce to the case

T ′ = ξr ◦ ξr−1(T ). But then by (b), FT ′ lies in the same component as χr ◦χr−1(FT ),

while χr ◦χr−1 ∈ Z
◦
u
, which proves (c) for this case. In the second case, we must have

T ′↓ ∼ ξr−2(T
↓) = ξr−2(T )

↓, and we may reduce to the case T ′ = ξr ◦ ξr−2(T ).

But then (c) is proved as in the previous case, with ξr−2 replacing ξr−1. �

By part (c) of this proposition we may define maps Sλ,t → Con(Fu,t) by sending

[T ] to the component containing FT ; this component will be denoted Fu,T . By (b)

and 3.3.3 these bijections are Au-equivariant, and by 3.2.3 they may be put together

(taking closures) into an Au-equivariant bijection Sλ
∼
→ Su, which is the promised

standard parametrisation of Su. The image of [T ] under this bijection is Fu,T .

Remark. We see that 3.4.1(c) may be sharpened to: FT and FT ′ lie in the same

component of F
u,|T | if and only if T ∼ T ′. Therefore, by 3.4.1(a), (b), it would have

been possible to define operations χr and χr,r+1 on Tλ with χr(T ) ∼ ξr(T ), such that

χr(FT ) = Fχr(T ) and χr,r+1(FT ) = Fχr,r+1(T ). We could then have replaced ξr by

χr in the definitions above with no difference in effect, but allowing 3.4.1(b) to be

rendered in a more pleasing form. However, these operations χr are more difficult to

define than ξr, since they may change more than one sign in a tableau. Because we

are eventually interested in tableaux only up to equivalence, we have not deemed such

an approach worth while.

We have completed the parametrisation of Su; there are a few points that we

would like to note specifically. The flags FT are useful to discriminate the different

irreducible components of F
u,|T | because these are disjoint according to the second

part of 3.2.3; however, it is not generally true that FT lies in a unique irreducible

component of Fu. In fact the flags FT are far from being “generic”, and tend to lie on

the intersection of such components. This can be seen already in the simplest cases

where Fu is reducible, as will be illustrated at the end of this section. The reason

for this is that when a standard k[u]-module Mλ is viewed as subquotient of another

such module N , then the special lines of Mλ often lie in the image of Ker(ηN ), even

if other lines in the same Zu-orbit do not; so in this respect the special lines are quite
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3.4 Standard k[u]-modules

special indeed.

We would also like to note the points at which our definitions differ from the origi-

nal ones given in [Spa II.6]. Our construction is entirely based on that of Spaltenstein,

although the notation is often different. In particular we use the same unsigned

tableaux, signs are added to the same dominoes and the same standard k[u]-modules

are used. Our interpretation of the signs, however, differs slightly from the original

one, and so does our equivalence of tableaux.

The difference can be described as follows, using our notation. In the original

construction there are operations similar to ξr, say ξ̂r, that change signs in a tableau

whose domino meets row r. These ξ̂r, however, change the signs of all such dominoes

of type (I+), rather than just of the first one from the right. Equivalence of tableaux

in [Spa], which we shall denote by ∼̂, satisfies T ∼̂ ξ̂r ◦ ξ̂s(T ) when λr = λs, and

T ∼̂ T ′ implies d : T ∼̂ d : T ′; this is similar to the situation for ξr and ∼.

These properties are achieved by defining equivalence classes of tableaux to be

cosets of an inductively defined subgroup of the elementary 2-group generated by the

dominoes of type (I+); the quotient group parametrises Su,T . For this quotient no

particular set of independent generators is specified, and the concept of clusters does

not appear in [Spa]. The original description also associates a particular flag to each

tableau T ; it lies in {FT | T ∈ Tλ } but it generally differs from FT . Denoting it

as F̂T , we have χr(F̂T ) = F̂ξ̂r(T ). A notable difference is that it is not always true

that F̂ ↓
T ≃ F̂T↓ ; this may fail to hold when sg(T1) = ‘−’, in which case we have

F̂ ↓
T ≃ F̂ξ̂r(T )↓ instead, with r = ρT1

.

The reason for our deviation from the orginal definitions, is that we wanted to

have a simple, explicit description of the set parametrising Su,T as a freely generated

2-group such that each gi ∈ Aλ affects at most one of its factors 2. This leads

naturally to our concept of clusters: it is clear from 3.3.2 that Sλ,T can be described

as the 2-group generated by the clusters of T except cl(0), and gi affects only the

cluster bT (i). We believe this approach is combinatorially more transparant than the

original one; apart from this, it reduces the complications in the computations to be

given. Nonetheless quite a few technicalities remain, but these seem to correspond to

essential features of the geometry involved.

For compatibility with the original definitions, we indicate how tableaux can be

translated from one interpretation to the other, in such a way that the same element

of Su is described in both cases. Any tableau may be built up, starting from ⊙,

by a sequence of operations that are either the addition of a leading domino d with

sg(d) 6= ‘−’ or the application of some valid ξr. A corresponding tableau in the setup

of [Spa] is obtained by the same sequence of operations, but replacing ξr by ξ̂r.

A last remark concerns the connected components of Fu in case Dn; to this end

we make a few simple observations. When for two tableaux S, T ∈ Tλ we have the

same leading domino, and FS↓ and FT↓ lie in the same connected component, then
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3.5 Keeping track of isomorphisms with standard modules

the same holds for FS and FT . From the definition of the standard k[u]-modules it is

not difficult to find a way of assigning to each domino shape within Y (λ) a vector in

Mλ, in such a way that for any tableau T containing no dominoes d with sg(d) = ‘−’,

the space (FT )i is spanned by the vectors assigned to the supports of the dominoes

T1, . . . , Ti, and that this span depends only on the union of those supports (the main

difficulty is naming the vectors, not finding them). Therefore, if S and T are two such

tableaux, then FS and FT lie in the same connected component since the maximal

isotropic spaces (FS)n and (FT )n coincide; we identify that connected component

with Bu.

Finally, any automorphism χr exchanges the connected components of Fu, while

ξr always changes exactly one sign in a tableau (since we are in case Dn), and there is

no cl(0). It follows that the connected component of FT is determined by the product

of the signs in all the dominoes d in T with typ(d) = (I+). When S and T differ only

in the sign of their last domino (the one with support {(1, 1), (2, 1)} ), then FS and FT

are companion flags.

We close this subsection with a proposition that emphasises the asymmetry be-

tween ‘+’ and ‘−’ in the definitions.

3.4.2. Proposition. Let d be a domino at the periphery of λ, with typ(d) = (I−),

κd = c ≥ 2 and mc−1(λ) = 0; let p be the special line in Mλ belonging to d, and let Π

be as in 2.3.6 (for l = p). Then, identifying p⊥/p with Mλ′ , the space S ⊆ Vc−1(Mλ′)

of 2.3.8, which is the image of Π[Wc(Mλ)] = Π[Wc−1(p
⊥)], coincides with the image

of the special line l+ of the summand M(c−1,c−1) of Mλ′ .

Proof. It follows from the remark following the definition of Mj,j that the indicated

line l+ lies in Π[Wc(Mλ)]; since dim(S) = mc−1(λ
′)−1 = 1, the proposition follows. �

3.5. Keeping track of isomorphisms with standard modules.

As was indicated above, a particular correspondence Su
∼
→ Sλ can be obtained after

the choice of an isomorphism M
∼
→ Mλ. There is a simply transitive action by

right-composition of Zu = Aut(M) on the set of such isomorphisms, and the effect of

composing an isomorphism with z ∈ Zu on the correspondence Su
∼
→ Sλ is composition

with the action of z on Su; in particular, composition by any z ∈ Z◦
u has no effect.

Therefore, we shall call the Z◦
u-orbits in the set of isomorphismsM

∼
→Mλ classes, and

two isomorphisms in the same class will be called equivalent. When a fixed class of

isomorphisms has been chosen, Fu,T ⊆ F̃u will denote the component corresponding to

Fu,T . The freedom of replacing any isomorphism by an equivalent one is very useful,

since it allows us to make any chosen l ∈ Qu correspond to some special line p in Mλ.

Choosing such an isomorphism then induces another isomorphism l⊥/l
∼
→ p⊥/p ∼=Mλ′ .

For a fixed class of isomorphisms M
∼
→ Mλ however, we do not always obtain a

single class of isomorphisms l⊥/l
∼
→Mλ′ , and this may be due to one of the following
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3.5 Keeping track of isomorphisms with standard modules

two circumstances. In the first place, there may be two special lines in Mλ, each of

which corresponds to l for a suitably chosen isomorphism in the given class. This

situation arises when l ∈ U I
j (M) and mj(λ) > 2, since then U I

j (M) is connected

and Z◦
u acts transitively on it. In the second place, for a fixed special line p, the

choice between equivalent isomorphisms M
∼
→ Mλ, each sending l to p, may result

in inequivalent isomorphisms l⊥/l
∼
→ Mλ′ ; this happens when the group K ⊆ Au[l]

of

our earlier analysis is non-trivial, i.e., when l ∈ UN
j (M) and mj(λ) > 1. It may be

necessary to restrict the class of the induced isomorphism in some way.

3.5.1. Proposition. Let a class of isomorphisms M
∼
→ Mλ, a tableau T , and a

flag f ∈ Fu,T with l = αu(f) be given. There exists an isomorphism in that class

that maps l to the special line belonging to the leading domino T1, and such that the

induced isomorphism l⊥/l
∼
→Mλ′ sends f↓ into F

u
′,T↓ .

Proof. It follows from the definition of Fu,T that αu[Fu,T ] is a Z◦
u-orbit containing

the indicated special line, so there is an isomorphism that meets the first requirement.

The flag corresponding to FT for this isomorphism lies in α−1
u [l], so by 3.1.1 its

(Z◦
u)l -orbit meets the component of α−1

u [l] ∩ Fu,T in which f lies. Therefore the

isomorphism may be modified by a suitable z ∈ (Z◦
u)l such that it meets the second

requirement as well. �

Since an a ∈ Au[l]
that fixes any element of Su[l],|T↓| will fix all such elements, the

requirements of 3.5.1 determine a unique parametrisation of Su[l],|T↓|. Note however

that this parametrisation depends on T and f rather than just on [T ] and l. It is

for this reason that we shall choose to work with concrete representatives T of [T ];

we retain the possibility to deliberately switch to another representative, if that suits

us better. As regards f , as long as we consider flags individually we may adapt the

choice of an isomorphism to the flag under consideration, and 3.5.1 allows us to write

f ∈ Fu,T ⇒ f↓ ∈ Fu′,T↓ , (20)

which justifies the use of the same operator ‘↓’ for flags and tableaux, and is quite

useful for induction. When considering sets of flags however, e.g., when we are proving

that some condition holds on a dense subset of Fu,T , we should be aware that it may

not be possible to choose an isomorphism such that (20) holds for all f ∈ α−1
u [l] si-

multaneously. Nevertheless it is clear that if it holds for one flag, then it also holds for

all flags in the same component of α−1
u [l] ∩ Fu,T , so if we consider each of these com-

ponents separately—there are at most two of them according to 3.3.1(c)—and choose

appropriate isomorphisms, then we may still employ (20) for all flags so considered.

A converse of (20) can be used without restriction. In order to formulate it

we introduce some notation: since any flag f with at least one part is completely

determined by f1 and f↓, we shall write f = f1 : f↓ (in analogy of a similar rule for

tableaux). For a given class of isomorphisms M
∼
→Mλ, and a domino d we have

l ∈ Ud(M) ∧ f ′ ∈ Fu[l],T ′ ⇒ l : f ′ ∈ Fu,d:T ′ , (21)
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3.5 Keeping track of isomorphisms with standard modules

where any isomorphism in the class that sends l to the special line belonging to d is

used to obtain an induced isomorphism l⊥/l
∼
→ Mλ′ . For, if the image of f ′ in Mλ′

lies in the same component of Fu[l],|T ′| as FT ′ , then certainly the image of l : f ′ lies

in the same component of Fu,|d:T ′| as Fd:T ′ .

Related to these matters, there is another difficulty that has to be mentioned.

Let n ≥ 2, and consider two flags f ∈ Fu,T and f ′ ∈ Fu,T ′ , which have fi = f ′i for

i ≥ 2, but l = f1 6= l′ = f ′1. Then l and l
′ are two isotropic lines spanning an isotropic

plane L = l + l′ = f2 = f ′2. Now f↓↓ and f ′↓↓ are identical flags in Fu[L]
; however,

notwithstanding (20), this does not imply that we have T ↓↓ ∼ T ′↓↓. This is because

adapting to f and T we may have obtained a different parametrisation of Su[L],|T↓↓|

than adapting to f ′ and T ′. First of all, we should note that T ↓↓ 6∼ T ′↓↓ can be

due to a “wrong” choice of T and T ′; indeed it may happen even for f = f ′, i.e.,

when T ∼ T ′ (if sg(T1) 6= sg(T ′
1) or sg(T2) 6= sg(T ′

2) ). Therefore we may first replace

T and T ′ by different representatives of [T ] and[T ′] respectively, but in some cases

this is not sufficient to obtain T ↓↓ ∼ T ′↓↓.

We examine the situation more closely according to the position of L. Put L̄ =

P(L) ⊆ P(Ker(ηM )) and d = T1, d
′ = T ′

1. First suppose that all of L̄ is contained

in Ud(M). Then we may map L̄ into Fu,|T | by sending p ∈ L̄ to the flag obtained

from f by replacing f1 by p; the image of L̄ in Fu,|T | obtained in this way is obviously

contained in one component. Therefore f ′ ∈ Fu,T , so T ∼ T ′, and we can take

T ′ = T giving T ↓↓ = T ′↓↓. Next suppose that L̄ 6⊆ Ud(M), but L̄ ∩ Ud(M) is

connected and contains l′ as well as l, then the same argument remains valid when L̄

is replaced by L̄ ∩ Ud(M). On the other hand, suppose that κd 6= κd′ , or equivalently

supp(d) ∩ supp(d′) = ∅. Then with j = κd and j′ = κd′ , and assuming j < j′, we

have L̄ ⊆ Uj(M) ∪ Uj′(M) and L̄ ∩ Uj′(M) = {l′}. It is not difficult to see that an

isomorphism M
∼
→ Mλ may be chosen that sends l and l′ to the special lines in Mλ

belonging to d and d′ respectively, since these lie in distinct summands. In that case

the images L/l and L/l′ of L in the spaces l⊥/l and l′⊥/l′ already correspond—under

the induced isomorphisms with standard modules—to the special lines belonging to

d′ and d respectively. It follows that in this case we may choose T and T ′ such that

T ↓↓ = T ′↓↓, and the two leading dominoes of T ′ are obtained by interchanging those

of T , except for their entries.

In the remaining case we have κd = κd′ = j with εj = +1, L̄ ⊆ Uj(M), and

L̄∩U I
j (M) consists of either one or two points, at least one of which is l or l′; we assume

l is one of them (so typ(d) = (I+)). The image L̃ of L in Vj(M) has dimension 2, and

L̄ ∩ U I
j (M) = {l} would imply that the restriction of bj(M) to L̃ is degenerate, and

hence that L/l ∈ UN
j (l⊥/l) and L/l 6∈ Qu[l]

; this contradicts the assumption f ∈ F̃u.

Therefore L̄∩U I
j (M) consists of two points, and we can choose an isomorphism M

∼
→

Mλ such that L corresponds to Wj(M(j,j)), where the summandM(j,j) corresponds to

the two rows of Y (λ) containing supp(d), and such that l corresponds to the special

line belonging to d. If we have typ(d′) = (I+), then—possibly after replacing T ′ by
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an equivalent tableau so as to get sg(d′) 6= sg(d)—we also have that l′ corresponds

to the special line belonging to d′. When typ(d′) = (N) we may also assume that l′

corresponds to the special line belonging to d′, either by a further adaption of the

isomorphism M
∼
→Mλ, or by applying a case already treated.

If typ(d′) = (I+) we obtain induced isomorphisms l⊥/l
∼
→ Mλ′

∼
← l′⊥/l′, and

under these isomorphisms the images L/l′ and L/l′ of L correspond to the same line

L̂ ∈ Uj−1(Mλ′); this is the special line (of type (I−)) of the summand Mj−1,j−1 that

corresponds to the rows of supp(d) (but it is not a special line ofMλ′ unlessmj−1(λ
′) =

2). Each of these isomorphisms gives rise to an isomorphism L⊥/L
∼
→ L̂⊥/L̂, and

these two differ by the automorphism 1 ⊕ −1 of the summand M(j−2,j−2) of L̂⊥/L̂

obtained from the mentioned summand Mj−1,j−1 of Mλ′ . (This is essentially due to

the automorphism χρd
of Mλ which was used to transform the canonical isomorphism

l⊥+/l+
∼
→ Mλ′ into l⊥−/l−

∼
→ Mλ′ , where l+ and l− are the special lines beloning to

d and d′.) The image of that automorphism in the group Au[L]
is the generator

gj−2 of Au[L],j−2, so the two isomorphisms are not in the same class (unless j = 2);

we have
[
T ↓↓

]
= gj−2 ·

[
T ′↓↓

]
in this case. If typ(d′) = (N) we similarly find that

under the induced isomorphisms of l⊥/l and l′⊥/l′ with standard modules, the images

of L correspond to special lines (of type (I−) and (N) respectively). When moreover

sg(d) = ‘+’ one finds that the two induced isomorphisms L⊥/L
∼
→ Mλ′′ are identical.

Hence we have T ↓↓ ∼ T ′↓↓ when sg(d) = ‘+’, and combining with the previous case,

we get
[
T ↓↓

]
= gj−2 ·

[
T ′↓↓

]
when sg(d) = ‘−’. We summarise our results.

3.5.2. Lemma. Let f, f ′ ∈ F̃u be such that fi = f ′i for i ≥ 2, but f1 6= f ′1. There

exist tableaux T, T ′ ∈ Tλ such that f ∈ Fu,T and f ′ ∈ Fu,T ′ and that moreover the

following conditions hold:

(a) If supp(T1)∩supp(T
′
1) = ∅ then T

↓↓ = T ′↓↓ and sg(T ′
1) = sg(T2), sg(T ′

2) = sg(T1).

(b) If supp(T1) = supp(T ′
1) and typ(T1) 6= (I+) then T = T ′.

(c) If supp(T1) = supp(T ′
1) and typ(T1) = (I+) then, with j = κT1

, we have T = T ′

if the images of f1 and f ′1 in Vj(M) are perpendicular and otherwise sg(T ′
1) =

− sg(T1), T ′
2 = T2 and T ′↓↓ = ξr(T

↓↓) where r = ρT2
= tλj−1.

(d) If supp(T1)∩supp(T
′
1) = {(r, j)} for some r, j, then if sg(T1) = ‘−’ or sg(T ′

1) = ‘−’

we have T ′↓↓ = ξr(T
↓↓), and else T ↓↓ = T ′↓↓. �

3.6. Examples.

Merely coroborative detail,

intended to give artistic verisimilitude

to an otherwise bald and unconvincing narrative.

W. S. Gilbert, The Mikado

We close this section with a number of examples of specific varieties Fu together

with the parametrisation of their irreducible components. In simple cases we can

give a more-or-less complete geometric description of Fu, from which one may get

an impression of the geometric structure of Fu in general, and of how much of it is
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accounted for by the corresponding tableaux.

Before we do so, we must discuss an additional structure on Fu, that we have

not introduced before since it is not needed in our computation, but which plays an

important rôle in the geometric description of Fu. Recall that F ∼= G/B̃. For any

simple reflection s of W , let Ps be the (parabolic) subgroup generated by B̃ and (a

representative of) s, then Ps/B̃ is isomorphic to the projective line P1. Consequently

any fiber of the projectionG/B̃ → G/Ps is also isomorhic toP1, and the corresponding

projective line in F is called a line of type s. Clearly the action of G on F preserves

these lines of type s, and one easily verifies that two distinct flags f, f ′ lie on the same

line of type s if and only if π(f, f ′) = s. For 1 ≤ i ≤ n (and i 6= 1 in case Dn) the

line of type si through a given flag f consists of all flags obtained from f by varying

fn+1−i, while fixing all other parts of f . In case Dn, a line of type s′2 is the set of

companion flags to a line of type s2.

It is easily shown that whenever two distinct points of a line of type s are stabilised

by some unipotent u, then so is the whole line. Now it is known that for (B′, B′′) ∈

O(w) ⊆ B × B and any reduced expression w = si1 · · · sir there is a unique sequence

B0 = B′, B1, . . . , Br = B′′ in B, such that π(Bj−1, Bj) = sij for j = 1, . . . , r (see

[Spa 0.12]). A similar statement holds for flags p, q ∈ F with π(p, q) = w ∈W (which

condition implies that p and q lie in the same component of F). Therefore p and q

are linked by a unique sequence of lines of types si1 , . . . , sir respectively, and from

the uniqueness of the intermediate flags it follows that if p, q ∈ Fu, then the whole

sequence of lines is contained in Fu (this, incidentally, is the way 1.8.1 is proved).

If, together with the geometric structure of Fu, we indicate the lines of all types s

lying in Fu, then the relative position of any pair of flags in Fu can be immediately

read off, provided that the situation is simple enough to find the shortest sequence of

such lines that connect the pair of flags. (In case Dn we cannot connect two flags in

different connected components, but companion flags have relative position s1 ∈ W̃ .)

Unless Fu is reduced to a point, every irreducible component of Fu is a union of lines

of type s for at least one simple reflection s.

We now discuss some specific cases. For B0, C0 and D1 the Dynkin diagram is

empty, and e = 1M is the sole unipotent and dim(F) = 0. These cases form the

starting point for any induction. While B0 and C0 are entirely trivial, there are two

flags (i.e., two isotropic lines in M) for D1; they are companions and correspond to

the two tableaux
�

1 and
�

1 , which are interchanged by the generator of Ae

∼= 2. For

cases B1 and C1 there are two classes of unipotents: the class of regular unipotents

(with one Jordan block), and {e}. When u is a regular unipotent, Fu consists of a

single flag, and the corresponding tableau is
�

0
�

1 respectively
�

1 . The same holds

for regular unipotents in all cases Bn or Cn, except that there are more dominoes (of

type (N)) in row 1. For regular unipotents in case Dn there are two tableaux, obtained

by extending the D1-tableaux by type (N) dominoes in row 1, and the situation is like

in case D1, except that Au
∼= 2× 2.
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In cases B1 and C1, the varieties Fe = F consist of a single line of type s1, and

are parametrised by
�

0

�

1 ∼
�

0

�

1 respectively by
�

1 . In the latter case, the line is just P(M),

while in case Bn it is the quadric of isotropic lines in P(M) ∼= P2. In general, lines

of type s1 will be embedded as “straight” lines in case Cn, while they are embedded

as “circles” in case Bn. Lines of type si with i > 1 are always “straight”, since

variation takes place within a fixed isotropic subspace. In all cases Fe is parametrised

by tableaux supported entirely in the first column; the constituent dominoes form a

single cluster. This cluster is cl(0) in cases Bn and Cn, so that all such tableaux are

equivalent, which is in agreement with the irreducibility of F , but in case Dn the

tableaux fall into two classes characterised by the product of signs in this cluster,

which correspond to the two components of F .

Regular unipotents and e are opposite extremes, and rather uninteresting from

our point of view. The simplest case where u is neither regular nor identity, is when

J(u) = (2, 2) in caseD2. Then the two connected components of Fu are lines of type s2
and s′2, that correspond respectively to the tableaux

�

1

�

2 and
�

1

�

2 . When moving a

flag f along the line of type s2, f1 varies within the fixed space f2 = W1(M), but

moving along the second line f2 varies with f1. This case exemplifies the fact that

Fu as an abstract variety may exhibit a symmetry (viz. the interchange of companion

flags) that does not come from the action of Zu; the latter preserves lines of any

given type. In fact Zu is connected in this case, so it stabilises each of the connected

components of Fu; the two mentioned tableaux each have a single, closed, cluster.

Because G = O4 has two connected components, so has the conjugacy class of u.

The examples so far have been atypical in the fact that the connected components

of Fu were irreducible. When J(u) = (2, 2) in case C2, however, Fu consists of a line

of type s2 parametrised by �1
�

2 , that is intersected in two distinct points by lines of

type s1, that are parametrised by
�

1
�

2 and
�

1
�

2 . So Su is the set of these three lines, of

which the last two are interchanged by the generator of Au
∼= 2. The variety Fu may

be depicted schematically as follows:

s1
�

1
�

2 s1
�

1
�

2

s2 �

1

�

2

The map αu can be viewed as the vertical projection in this picture. The intersection

points of two lines belong to Fu,T for T =
�

1
�

2 respectively T =
�

1
�

2 , not for T =
�

1

�

2 , which is why they are set apart slightly from the horizontal line. In fact these

intersection points are the special flags FT—for the former two values of T—that

are used to discriminate between the two vertical lines (the third special flag FT is

somewhere else on the horizontal line).
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��������

s2 s1There is one other class of unipotents for C2,

with J(u) = (2, 1, 1). This provides the simplest

case where not all or Zu-orbits in Im(αu) are good.

There are two such orbits: U2(M), which is a sin-

gle point, and U1(M), which is a P2 minus that

point. For l ∈ U1(M), the fibre α−1
u [l] consists of

just one flag since u[l] is regular, but α−1
u [l] ∼= P1

for l ∈ U2(M), since in that case u[l] = 1l⊥/l.

It follows that U1(M) is a good orbit, whereas

U2(M) is not, and Fu has one irreducible com-

ponent, parametrised by
�

1

�

2 , which is isomorphic

to P2 with one point blown up to a P1. This variety is a union of lines of type s2,

namely the lines in P2 meeting the blown-up point, which itself is the unique line of

type s1 contained in Fu. We see that the relative position of a generic pair of flags

in Fu is s2s1s2, and that the sequence of 3 projective lines linking the pair always

contains the blown up point—which is not contained in F̃u—as its middle segment.

(In view of this example it is not at all clear whether F̃u is connected in all cases (for

Dn: whether #Con(F̃u) = 2), since the proof for Fu evidently fails for F̃u.)

In cases like this, when J(u) has a relatively large number of small parts, and

hence dim(Fu) is high, Fu may often be more easily described—in a direct transla-

tion of its definition—as a set of (projective images of) flags subject to one or more

restrictions relating to specific points, lines etc. In this case Fu can be viewed as

the set of incident point–line pairs in P2 (namely in P(W1(M)) ) where the line is

required to contain a given point (namely P(W2(M)) ). Similarly, in the general Cn-

case, if J(u) = (2, 1, 1, . . .) then Fu is the (irreducible) set of isotropic flags whose

highest dimensional part contains p = W2(M), and these flags are all contained in

p⊥ =W1(M).

It is instructive to compare the cases B2 and C2. For an appropriate pairing

of the unipotents we get isomorphic varieties Fu—which is not surprising since the

Dynkin diagrams of types B2 and C2 are isomorphic, interchanging the simple reflec-

tions s1 and s2—and we get a pairing between tableaux as well. However, for two

corresponding pairs (u, T ), we do not always have that the two associated sets Fu,T

match precisely, although their closures do. In fact, even F̃u may differ between the

two cases. Identity and regular unipotents pair up of course; the triple
�

1
�

2 , �1
�

2 ,
�

1
�

2

for case C2 matches the triple
�

0
�

1

�

2 ,
�

0
�

2

�

1 ∼
�

0
�

2

�

1 ,
�

0
�

1

�

2 for B2, and the final tableau
�

1

�

2 matches
�

0

�

1
�

2 ∼
�

0

�

1
�

2 .

So for J(u) = (3, 1, 1) the variety Fu is similar to the picture drawn above,

but now Im(αu) consists of two intersecting lines, and for the point p of intersection,

α−1[p] is the horizontal line, which is of type s1 (and hence “round”). The intersection

points in the picture now are part of Fu,T for [T ] parametrising the horizontal line;

indeed each one is equal to FT for a representative T . For J(u) = (2, 2, 1) we have
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3.6 Examples

Im(αu) = U2(M) ∼= P1, and for any l ∈ U2(M) we have that α−1
u [l] ∼= P1 is a line of

type s1; there is one line of type s2 contained in Fu, namely { f ∈ Fu | f2 =W2(M) },

which intersects every fibre α−1
u [l]. Although Fu can be shown to be isomorphic to

the corresponding variety for C2 (lines of types s1 and s2 being interchanged), this is

not true for F̃u, since in this case it equals Fu.

The cases with n = 3 offer a wide variety of examples, all of which can—with a

sufficient amount of effort—be geometrically understood, at least up to the point that

one can deduce the relative position of generic pairs of flags in specified components

of Fu. We shall mention only a few cases that illustrate phenomena not obvious from

the simpler examples.

Consider in case C3 a unipotent u with J(u) = (3, 3). Then Im(αu) = U3(M) ∼=
P1 is a single Zu-orbit, and for any l ∈ U3(M) the fibre α−1

u [l] is isomorphic to the

three intersecting lines (of types s1, s2 and s1) depicted above. Since the domino with

entry 3 added to the corresponding tableaux is of type (I−) and therefore doesn’t give

rise to creation or fusion of clusters, Su has three elements, parametrised as
�

1
�

2

�

3 ,
�

1

�

2
�

3 , and
�

1
�

2

�

3 .

��������

�

1
�

2

�

3

�

1
�

2

�

3

�

1

�

2
�

3

s1

s2

s3

s1

Now f ∈ α−1
u [l] lies on a line of type s3

contained in Fu if and only if f2 = W1(M),

and it is readily checked that in that case

typ(f2/l) = (I+) in l⊥/l, and in fact f ∈

Fu,T for T =
�

1
�

2

�

3 , as this is the only tableau

of the three for which FT satisfies the con-

dition. Because dim(Fu) = 2, this compo-

nent Fu,T , being a union of lines both of

type s1 and of type s3, must be isomorphic

to P1 × P1. Next, for T = �1
�

2
�

3 we have f ∈ Fu,T if and only if f3 = η−1
M [f1], so

this component, which is a surface ruled by lines of type s2, intersects the previous

component in a line that is “diagonal” with respect to the lines of types s1 and s3.

The third component, Fu,T for T =
�

1
�

2

�

3 , is characterised by typ(f2/l) = (I+) but

f2 6=W1(M), and is ruled by lines of type s1 only; it intersects the second component

in a line transversal to the lines of type s2, and is disjoint from the first component.

We see in this example that the symmetry present in the individual fibres α−1
u [l]

disappears globally. This phenomenon—visible also in case D2 with J(u) = (2, 2),

although less dramatically—is due to the transformation of open clusters to closed ones

by adding a domino of type (I−). In the present case the components parametrised

by
�

1
�

2

�

3 and
�

1
�

2

�

3 are not even isomorphic geometrically: the first is P1 × P1, while

the second proves to be isomorphic to a cone (over a circle) blown up at its apex, (as,

incidentally, does the remaining component).

Another thing that can happen with clusters is that by adding a domino two

clusters merge into one; when this happens, certain pairs of symmetric components of

fibres turn out to be part of one irreducible component globally. An example occurs
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3.6 Examples

in case C3 when J(u) = (2, 2, 2). We have dim(Fu) = 3, and Su has 3 elements, that

are parametrised as
�

1

�

2

�

3
,
�

1
�

2

�

3
∼
�

1
�

2

�

3
, and
�

1

�

2
�

3 ∼
�

1

�

2
�

3 . Note that in all three cases there is

only one cluster, cl(0), whence the two stated equivalences hold, but the first of these

two equivalences becomes invalid if the dominoes with entry 3 are removed. Because

its dimension is 3, it is rather difficult to give a complete geometric description of Fu,

but we may describe its components as sets of flags as follows.

�	
��
Æ�

�

1
�

2

�

3

�

1

�

2
�

3

�

1

�

2

�

3

Let P = U2(M) ∼= P2 and Q = U I
2(M),

a smooth quadric in P . Then Fu,T for T =
�

1

�

2

�

3
is the flag manifold of P (i.e., the set of

all incident point–line–plane triples in P ),

while Fu,T is the open subset of flags whose

point does not lie on Q and whose line is not

tangent to Q. The flags of Fu,T for T =
�

1
�

2

�

3

are not all contained in P , but their line-part

is, and it is tangent to Q; the point does not lie on Q, and there is one dimension of

freedom “rotating” the plane around the line, outside of P . The irreducibility of this

set illustrates the effect of fusion of clusters: whereas for any point p ∈ P \ Q, the

fibre α−1
u [p] intersects this set in two disjoint components—corresponding to the two

tangent lines to Q through p—the whole set is irreducible, since this is true for the

set of all incident pairs point–tangent line. Note that the line of type s2 contained

in α−1
u [p]—which lies in the first mentioned irreducible component, the flag manifold

of P—intersects this second irreducible component Fu,T in precisely two points. The

third set Fu,T , for T =
�

1

�

2
�

3 , consists of flags whose point-part lies on Q; the plane

may be rotated around the tangent to Q at this point, and the line is arbitrary in that

plane, except that it must not be equal to the tangent line, since such flags are not in

F̃u.

In case B3 the unipotents with J(u) = (3, 3, 1) and J(u) = (3, 2, 2) respectively

illustrate the same phenomena related to cluster fusion repectively closure as the cases

treated for C3, but with the dimensions of Fu (which are 2 resp. 3) switched. In the

first of these cases the “fused” component is parametrised by
�

0
�

1

�

2
�

3 , and is isomorphic

to the blown-up cone mentioned earlier. Its intersections with fibres α−1
u [l] are derived

from the intersections with planes taken from a pencil about a line through the apex

of the cone; indeed this gives two disjoint lines, except in two instances where it gives

only one line.

The second of these cases illustrates yet another fact. The two non-symmetric

irreducible components parametrised by
�

0
�

1

�

2

�

3 and
�

0
�

1

�

2

�

3 intersect each fibre α−1
u [l]

for l ∈ Qu = U2(M) in disjoint lines. However, for l ∈ U3(M) these components

(i.e., the closures Fu,T ) intersect the fibre in the same line (flags f ∈ Fu in the

union of the two components are characterised by the condition ηM [f3] ⊆ f1). Hence

these two irreducible components are not disjoint, which shows that we may not take
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3.6 Examples

closures in the second part of 3.2.3. A similar phenomenon can be seen in case D3 for

J(u) = (2, 2, 1, 1), in which case the intersection of two irreducible components with

the same unsigned tableau takes place within F̃u.

A last example will illustrate that the difficulties treated in 3.5 involve an essential

aspect of the geometry, and are not just an idiosyncrasy of our particular parametri-

sation. Consider in case D3 a unipotent with J(u) = (3, 3). Then Fu is 1-dimensional,

and can be drawn as follows:

s2
�

1

�

2
�

3 s′2
�

1

�

2
�

3 s′2
�

1

�

2
�

3 s2
�

1

�

2
�

3

s3
�

1
�

2

�

3
s3

�

1
�

2

�

3

The horizontal lines are of type s3, the outer vertical lines are of type s2 and the inner

ones are of type s′2. Translating the left half of the picture so that it covers the right

half puts companion flags on top of each other; as can be seen this affects the sign

of the domino with entry 1 only. We have Au
∼= 2, and (some representative of) its

generator acts by reflection in the vertical axis of the picture; this affects the sign in

the rightmost cluster of the tableaux only, which contains one domino for the vertical

lines and all three dominoes for the horizontal lines. As in the case depicted for C2,

the special flags FT for the tableaux on the vertical lines lie on the intersection points

with the horizontal lines.

The set U I
3(M) has two points, and for l ∈ U I

3(M) the fibre α−1
u [l] is the pair of the

leftmost vertical lines of each connected component, respectively the pair of rightmost

ones. These two fibres are isomorphic by the action of Au (isomorphisms identifying

the vertical lines of the same connected component are not suitable, since they don’t

respect the types of lines), and our parametrisation is such that corresponding com-

ponents give the same reduced tableau T ↓, that can be used in inductive procedures.

We may reduce one step further, taking fibres α−1
u[l]

[L/l] of this fibre (for appropriate

planes L), and find that these consist of two isolated points, each one representing a

possible value of f3.

However, while we know that f3 determines the connected component of f , we

have already identified the fibres α−1
u [l] by an isomorphism that does not respect con-

nected components, so we cannot expect a consistent connection between f3 and T ↓↓.

In particular, for L = W1(M)—which can be used for l ∈ UN
3 (M) as well as for

l ∈ U I
3(M)—we find as (repeated) fibres pairs of companion flags on the horizontal

lines in the picture, including the intersections. Although the same pair of values

for f3 occurs in all these fibres, we see that the correspondence of this pair with the

values of T ↓↓ flips at the intersection with the rightmost vertical line.
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4 Computing relative positions

Clearly we might have chosen a parametrisation for which this doesn’t happen—

indeed Spaltensteins original parametrisation has this property—but this would be of

little help, since in order to describe fibres of αu we would have to replace T 7→ T ↓

by another operation, and we would end up in similar complications. Those who find

the simplicity of this example misleading, or the fact that Fu is not connected, should

study the 2-dimensional example with J(u) = (4, 4) in case C4 (#Su = 10 in this

case, but the most interesting information is obtained by studying the component

parametrised by �1
�

2
�

3

�

4 , which is isomorphic to P1 × P1, and its intersections with

other components). This shows even more convincingly that it is not possible to

identify fibres of the projection αu: f 7→ f1 in a way that simultaneously respects the

projection f 7→ f3.

§4. Computing relative positions.

4.1. Relative positions of flags revisited.

In 1.5 we have defined the relative position of a pair of flags, and in 3.6 we have

seen that reduced expressions for this relative position can be interpreted in terms

of sequences of projective lines in F connecting the pair. There is however another

interpretation, which relates the signed permutation representing the relative position

directly to the parts of the flags, and this interpretation will prove to be very useful.

In order to express this relationship, it is convenient to consider flags equipped

with some additional information, namely a sequence of numbers that will be used to

label its parts. We shall still call these objects ‘flags’, and define a standard sequence,

to be used with flags for which no sequence is explicitly specified. These sequences of

numbers consist of 0, followed by an increasing sequence of n distinct positive integers.

We may use a number from the sequence attached to a flag f to select a particular part

of f ; if we do so, we write that number as a superscript to f (recall that subscripts

were used to select a part by its dimension). This labeling is by decreasing dimension:

fn = f0 ⊃ f i1 ⊃ · · · ⊃ f in = 0 where 0 < i1 < · · · < in; (22)

the dimension decreases by 1 at every inclusion. We write I(f) for the set {0, i1, . . . , in}

of labels attached to f . If f has the standard labeling, then I(f) = {0, 1, . . . , n}, so

that f i = fn−i. We define I(f↓) = I(f) \ {max
(
I(f)

)
}; so if f has standard labeling,

then so has f↓. We can now get around the index-shift in the definition (9) appearing

in 1.8, and instead write

f↓i = f i/f1 for i ∈ I(f↓). (23)

Non-standard labeling of flags may be defined implicitly by the following convention.

Recall that the values occurring as entries of dominoes in a tableau may be any set
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4.1 Relative positions of flags revisited

of distinct positive integral numbers. We define for any tableau T with sh(T ) = J(u)

a set Fu,T of flags, such that for all f ∈ Fu,T we have I(f) = {0} ∪ Σ, where Σ is

the set of entries of dominoes of T . The underlying set of (unlabeled) flags of Fu,T is

Fu,T ′ , where T ′ ∈ Tλ is obtained from T by renumbering its entries using the unique

monotonic bijection Σ → {1, . . . , n}. We extend the superscript notation to negative

values, so put −I(f) = {−i | i ∈ I(f) }, where the element −0 ∈ −I(f) should be

considered to be distinct from 0 ∈ I(f) (this will not bring us into any trouble). Now

we define f i for i ∈ −I(f) by requiring

f−i = f i⊥ for i ∈ I(f)∐−I(f). (24)

Remark. The order reversal with respect to dimension introduced here compensates

for the fact that the highest numbered dominoes in tableaux correspond to the lowest

dimensional parts of flags. However, one may feel that we are still off by 1, since

for f ∈ Fu,T the leading domino of T , whose entry equals the highest label of f , is

related to the position of f1 = f i where i is the highest label but one. On the other

hand, for any i the position of the flag f↓···↓ induced in f−i/f i is related, by repeated

application of rule (20) in 3.5, to the subtableau of T of dominoes with entries ≤ i;

these entries are the ones occurring in I(f↓···↓) (but 0 is absent).

We now first define a relative position π(f, l) of a flag f and an isotropic line l,

which is a non-zero integer i with |i| ∈ I(f).

π(f, l) =

{
min { i ∈ I(f) | l 6⊆ f i } if l ⊆ f0

max { i ∈ −I(f) | l ⊆ f i } if l 6⊆ f0
(25)

Note that, since l is isotropic and f0 is an isotropic subspace of maximal dimension,

l 6⊆ f0 implies l 6⊆ f−0. We also define a flag f[l] in the space l⊥/l. The parts of f[l]
are the “images” of those of f selected by the same label:

I(f[l]) = I(f) \ {|π(f, l)|} and f i[l] = (f i ∩ l⊥ + l)/l for |i| ∈ I(f[l]). (26)

Here ‘∩’ takes priority over ‘+’. Note that this formula is consistent with (24), and

would give the same results for i = |π(f, l)| as it gives for i equal to the immediately

preceding element of I(f); therefore, by the omission of |π(f, l)| from I(f[l]), each

part of f[l] is selected by a unique superscript. Note also that the operation ‘+ l’ is

redundant when i < π(f, l), and that ‘∩ l⊥’ is redundant when i > −π(f, l). One

readily verifies that the flag f[l], like f , is a full isotropic flag. As a special case, we

have f↓ = f[f1].

The relative position π(f, l) defined in (25) can also be computed by a recursive

procedure π1, where π1(f, l) is defined as follows. Let m = max
(
I(f)

)
and put h = f1.

If h = l we have π1(f, l) = m, and unless h ⊥ l we have π1(f, l) = −m; in the remaining

case we have π1(f, l) = π1(f
↓, l′), where l′ = (l + h)/h ⊆ h⊥/h.
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4.1.1. Proposition. Let f ∈ F and let l be an isotropic line. Then π1(f, l) = π(f, l).

Proof. The simple inductive proof is left as an exercise to the reader. �

In the same fashion we can now define a procedure π2 that computes the relative

position of two flags, expressed as a signed permutation. So π2(f, f
′) yields a sequence

(w1, . . . , wn), which is defined as follows. If I(f) = {0} (i.e., if n = 0), then the

sequence is empty; otherwise assume that π2 has been defined for flags in l⊥/l, where

l = f ′1. Then wn = π1(f, l), and (w1, . . . , wn−1) = π2(f[l], f
′↓). It is easy to see that if

f has the standard labeling, then (7) is satisfied and π2(f, f
′) is a signed permutation.

The following proposition also follows immediately from the definitions.

4.1.2. Proposition. Let f, f̃ be two flags that differ only by a monotonic renum-

bering of their labels. Then for any flag f ′, the sequences π2(f, f
′) and π2(f̃ , f

′)

have the same signs at corresponding positions, while the absolute values are re-

lated by the same renumbering as I(f) and I(f̃) are. �

4.1.3. Proposition. Let f, f ′ ∈ F and w = π(f, f ′). Then π2(f, f
′) = (w1, . . . , wn)

is the signed permutation representing w.

Proof. We first show by an easy computation that π2(F,w · F ) = (w1, . . . , wn).

Assuming n > 0 and using (2), we have (w ·F )1 = w · 〈en〉 = 〈ewn
〉, and π(F, 〈ewn

〉) =

wn by (25). Putting l = 〈ewn
〉, we get from (26) that the underlying flag of F[l] is the

standard flag F in l⊥/l, but I(F[l]) = {0, . . . , n}\{|wn|}. Now applying induction and

4.1.2 gives π2(F[l], (w · F )
↓) = (w1, . . . , wn−1), whence π2(F,w · F ) is as claimed. But

it is clear from the definition that π2(g ·f, g ·f
′) = π2(f, f

′) for every g ∈ G, so that π2
gives the same value on the whole orbit Õ(w) ⊆ F×F , establishing the proposition. �

Conway called this number “zero”,

and said that it shall be a sign

to seperate positive numbers from negative numbers.

D. E. Knuth, Surreal Numbers

4.2. Generic relative positions.

Because the varieties Õ(w) form a finite partition of F × F , it follows that for any

irreducible subset X of F × F there is a unique w ∈ W̃ such that X ∩ Õ(w) is dense

in X. This element w will be denoted γ(X). If X is the direct product X1 × X2 of

(irreducible) subsets of F , we call γ(X) the generic relative position of X1 and X2,

and we shall write γ(X1, X2) = γ(X). Our goal, that was already mentioned in the

introduction, can now be more specifically formulated as determining, for any pair

T, T ′ of tableaux with sh(T ) = sh(T ′) = J(u), the relative position γ(Fu,T ,Fu,T ′).

It is clear that, for σ, τ ∈ Su and a ∈ Au, we have the following properties for γ:

γ(τ, σ) = γ(σ, τ)−1 (27)

γ(a · σ, a · τ) = γ(σ, τ) (28)

The interest of γ(σ, τ) is demonstrated by the following fact.

38



4.2 Generic relative positions

4.2.1. Theorem. Let Ū be a set of representatives of unipotent conjugacy classes in

G◦, and for any unipotent u ∈ G◦ let A◦
u = Con((G◦)u) act diagonally on Irr(Bu) ×

Irr(Bu), then γ gives rise to a bijection

γ̄ :
∐

u∈Ū

A◦
u\(Irr(Bu)× Irr(Bu))

∼
→W,

where the terms of the left-hand side are sets of orbits for A◦
u.

Proof. This has been proved for reductive groups G in general, see [Spr2 3.8] and

[Spr3 4.4.1], or in somewhat disguised formulations [Spa II 2.11] and [St2 3.4]. The

general proof is complicated, as one needs to prove that dim(Zu) = 2 dim(Bu)+rk(G)

[Spa II 10.15]. In the case of classical groups, however, this equality can easily be

established by explicit calculation. �

4.2.2. Corollary. Let Ũ be a set of representatives of unipotent conjugacy classes

in G, then γ also induces a bijection

γ̃ :
∐

u∈Ũ

Au\(Su × Su)
∼
→ W̃ .

Proof. In cases Cn and Bn this is immediate from 4.2.1, so assume we are in case Dn.

We first prove the following claim: γ̃ maps the subset of orbits consisting of pairs

(σ, τ) ∈ Su × Su where σ and τ are contained in the same connected component,

bijectively to W . We examine each u ∈ Ũ separately, and distinguish two cases,

namely whether Zu ⊆ G
◦ or not. Consider first the case that there exists a g ∈ Zu\G

◦

(this happens whenever #Au > 1). Then the G-conjugacy class of u coincides with

its G◦-conjugacy class, and the action of g gives an isomorphism from one connected

component of Fu to the other. Since we have identified one of these components

with Bu, it follows that each orbit in the specified subset of Au\(Su × Su) contains

a unique orbit in A◦
u\(Irr(Bu) × Irr(Bu)), and the two are mapped to the same

element of W by γ̃ and γ̄ respectively. Next consider the case Zu ⊆ G◦. Then

the G-conjugacy class of u has two connected components, each of which is a G◦-

conjugacy class, and conjugacy by any g ∈ G\G◦ exchanges the two. Also, the action

of Zu stabilises each of the connected components of Fu, and, with u′ = gug−1 a

representative of the component not containing u, the action of g gives an isomorphism

of the component Fu \ Bu with Bu′ . Therefore, the set Su is in bijection with

Irr(Bu) ⊎ Irr(Bu′), and Au
∼= A◦

u
∼= A◦

u′ stabilises both subsets (in fact Au is trivial),

from which the claim easily follows. To finish the proof, it suffices to verify that for

a pair f, f̃ of companion flags and for all flags f ′, one has π(f, f ′) = s1π(f̃ , f
′). �

Clearly, for any irreducible X ⊆ F ×F , we have γ(X) = γ(X). Our computation

of γ(σ, τ) will proceed essentially by repeatedly replacing σ × τ by suitable dense

subsets until we have reached a subset on which π(f, f ′) is constant. Here, and
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elsewhere, ‘dense’ may be read as ‘open and not empty’, since we only exclude closed

sets, and X is irreducible. We shall use the procedures π1 and π2 of 4.1 to compute

π(f, f ′), so an intermediate subset to be sought for is for instance one on which

π1(f, f
′
1) is constant. In view of the definitions of π1 and π2, the things to be studied

are the conditions h = l and h ⊥ l for h = f1 and l = f ′1, and suitable reductions

towards h⊥/h and l⊥/l in order to apply induction (at two levels). The following

sections discuss the issues encountered in this—apparently straightforward—approach.

4.3. Fundamental computations.

As the very first reduction we replace the irreducible components Fu,T by their dense

subsets Fu,T . So let two tableaux T, T ′ be given with sh(T ) = sh(T ′) = λ = J(u),

and let a class of isomorphisms M
∼
→ Mλ be chosen, so that Fu,T and Fu,T ′ denote

well-defined components of Fu. Until further notice, f will denote a flag in Fu,T ,

possibly subject to further restrictions, and f ′ similarly denotes a flag in Fu,T ′ . Let

d = T1 and e = T ′
1 be the leading dominoes of T and T ′ respectively, put (r, c) = π(d),

(r′, c′) = π(e), and let h = f1 and l = f ′1 denote the 1-dimensional parts of f and f ′.

As a consequence of the definitions in 3.3 and 3.4 we have h ∈ Ud(M) and l ∈ Ue(M).

Since αu[Fu,T ] is connected (it is a Z◦
u-orbit) we have even more precise information

about h when Ud(M) is not connected: in that case we know in which of the two

connected components h lies. This situation arises in the exceptional case of 3.3.1(a),

i.e., when typ(d) = (I+) and mc(λ) = 2; then sg(d) determines the component of h.

This special case can also be characterised by the condition {d} ∈ CT (see the remark

in 3.3), and since we need to refer to it quite often, we shall do so by the latter terse

form; note however that it depends only on d and λ = sh(T ). Similar statements hold

for l. We shall write d ≈ e to indicate that d and e are equal up to their entries, i.e.,

that π(d) = π(e) and typ(d) = typ(e) and sg(d) = sg(e).

4.3.1. Proposition.

(a) We have h = l for all choices of f ∈ Fu,T and f ′ ∈ Fu,T ′ if and only if either r =

r′ = 1 or r = r′ = 2 ∧ d ≈ e ∧ {d} ∈ CT .

(b) We have h ⊥ l for all choices of f ∈ Fu,T and f ′ ∈ Fu,T ′ if and only if either c 6= 1

or c′ 6= 1 or d ≈ e ∧ {d} ∈ CT .

Proof. (a) We have h = l for all f, f ′ if and only if αu[Fu,T ] = αu[Fu,T ′ ] = {p}

for some point p. Now, as we have seen in 2.3, dim(Ud) = 0 holds only if r = 1 or

r = 2 ∧ typ(d) = (I+), where the latter implies {d} ∈ CT . When r = r′ = 1 we

necessarily have d ≈ e and h = l. When r = r′ = 2 and typ(d) = typ(e) = (I+) we

have αu[Fu,T ] = αu[Fu,T ′ ] only if sg(d) = sg(e), i.e., if d ≈ e; this also implies

h = l. (b) When c 6= 1 we have h ⊆ Wc(M) ⊆ Im(ηM ) ⊥ Ker(ηM ) ⊇ l

implying h ⊥ l, which follows similarly if c′ 6= 1. Now assume c = c′ = 1, and

let h̄ and l̄ be the respective images of h and l in V1(M); we have h ⊥ l if and

only if h̄ ⊥ l̄ with respect to b1,M . Since b1,M is non-degenerate, and h̄ and l̄ are
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isotropic lines (so dim(V1(M)) ≥ 2), we only have h̄ ⊥ l̄ for all choices if we are

forced to have h̄ = l̄; as in (a) this is when d ≈ e ∧ {d} ∈ CT . �

This proposition indicates in which cases π1(f, f
′
1) = ±|d| for generic f, f

′ (recall

that |d| = max(I(f)) ), i.e., when γ(Fu,T ,Fu,T ′) = w for some w with |wn| = |d|. In

the remaining cases—when we have h ⊥ l, but not h = l for all choices—we want to

apply induction in order to compute π1(f, l). Consider a fixed value of h; since the

set αu[Fu,T ] is a Z◦
u-orbit, any choice will do equally well. By the definition of π1,

we should now consider the flag f↓ and the line l′ = (l + h)/h in h⊥/h. Putting

λ′ = J(u[h]) = sh(T ↓), then by 3.5.1 there exists for any f ∈ α−1
u [h], a suitable

induced isomorphism h⊥/h
∼
→ Mλ′ for which f↓ ∈ Fu[h],T↓ . Moreover (21) implies

that, given such an isomorphism, all flags in Fu[h],T↓ can be obtained as f̃↓ for some

f̃ ∈ α−1
u [h] ∩ Fu,T . Now in order to proceed with the computation of wn, we shall

have to determine the Zu[h]
-orbit of l′. Also, once wn is determined, the definition

of π2 calls for a reduction towards l⊥/l, and calculation of f[l], whose 1-dimensional

part is h′ = h + l/l; therefore we shall want to determine its Zu[l]
-orbit as well. If

these orbits of h′ and l′ are good they can be described, as stated in 3.3, as Ud′(l⊥/l)

and Ue′(h
⊥/h) respectively, for certain dominoes d′ and e′ (in fact only their supports

are needed to specify an orbit). Our next step will be to determine such dominoes;

fortunately it turns out that for any T, T ′ they exist under a dense condition on (h, l).

Evidently there is a certain symmetry between the problems of determining d′ and e′.

We first consider the simplest case. Note that, since both d and e lie at the

periphery of λ, the conditions r = r′, c = c′, π(d) = π(e), and supp(d)∩ supp(e) 6= ∅

are all equivalent.

4.3.2. Proposition. Assume that c 6= c′. Then for all choices of f and f ′ we have

h ⊥ l but h 6= l; furthermore with h′ and l′ as defined above we have h′ ∈ Ud(l
⊥/l)

and l′ ∈ Ue(h
⊥/h).

Proof. The first statement is immediate from 4.3.1. Now using 2.3.6, we get

from (a) that h ∈ Uc(l
⊥) and from (c) and (d) that h′ = Π[h] ∈ Uc(l

⊥/l). Now

to prove h′ ∈ Ud(l
⊥/l) it remains to show typ(h′) = typ(d), where typ(d) = typ(h)

by definition. Consider an x ∈ h \ {0} and y ∈ l⊥ with ηc−1
M (y) = x; then

bc,l⊥/l(Π(x),Π(x)) = b[l](Π(x),Π(y)) = bM (x, y) = bc,M (x, x), where the barred

expressions denote images in the spaces Vc(l
⊥/l) and Vc(M) respectively. This proves

the statement about h′, we similarly get l′ ∈ Ue(h
⊥/h). �

We now consider the remaining case c = c′, with moreover h ⊥ l but h 6= l.

Then let h̄ and l̄ denote the (nonzero) images of h and l in Vc(M); as we have seen in

2.3.8(a), the images of Wc(h
⊥) and Wc(l

⊥) in that space are h̄⊥ and l̄⊥ respectively.

We may formulate the questions pertaining to the orbits of h′ and l′ in terms of h̄

and l̄.
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4.3.3. Proposition. Let h, l and related symbols be as specified above.

(a) The three conditions h′ ⊆Wc+1(l
⊥/l), l′ ⊆Wc+1(h

⊥/h) and h̄ = l̄ are equivalent.

(b) We have h′ ⊆ Wc(l
⊥/l) if and only if either typ(l) = (N) or h̄ ⊥ l̄. Similarly

l′ ⊆Wc(h
⊥/h) if and only if either typ(h) = (N) or h̄ ⊥ l̄.

Proof. (a) The image of the plane h + l in Vc(M) is h̄ + l̄. The condition h̄ = l̄

is equivalent to dim(h̄ + l̄) = 1, which is equivalent to h + l having a non-trivial

intersection with Wc+1(M). Using 2.3.6(a,c,d) for i = c + 1 and the fact that

h′ = Π[h + l], we find that this condition is equivalent to h′ ⊆ Wc+1(l
⊥/l). The

other equivalence is entirely similar. (b) It is sufficient to prove the first statement.

As h′ = Π[h + l] we have h′ ⊆ Wc(l
⊥/l) if and only if h + l ⊆ Π−1[Wc(l

⊥/l)]. Now

if typ(l) = (N) we have by 2.3.6(d,a) that Π−1[Wc(l
⊥/l)] = Wc(l

⊥) ⊕ l = Wc(M),

whence this condition is always satisfied. On the other hand, if typ(l) 6= (N) we have

Π−1[Wc(l
⊥/l)] =Wc(l

⊥) ⊇ l, whence by 2.3.8(a) the condition is equivalent to h̄ ⊥ l̄. �

Note that we are confronted with questions very similar to the ones dealt with in

4.3.1, but with Vi and its bilinear form replacingM , and with additional possibility of

h̄ or l̄ being non-isotropic lines, which is not possible for h or l. We consider typ(h′)

and typ(l′) next.

4.3.4. Lemma. Let h, l and related symbols be as specified above.

(a) If typ(l) 6= (N) and h̄ 6⊥ l̄ then h′ ∈ Uc−1(l
⊥/l), and typ(h′) 6= (N). Similarly if

typ(h) 6= (N) and h̄ 6⊥ l̄ then l′ ∈ Uc−1(h
⊥/h), and typ(l′) 6= (N).

(b) Assume that h̄ 6= l̄. If typ(l) = (N), then h̃ = (h+ l)∩Wj(l
⊥) is a line in Wj(M),

and typ(h′) = typ(h̃). Similarly, if typ(h) = (N), then l̃ = (h + l) ∩Wj(h
⊥) is

a line in Wj(M), and typ(l′) = typ(l̃). Moreover, in either of the two cases, the

condition typ(h̃) = (I+) respectively typ(l̃) = (I+) is equivalent to the degeneracy

of bc,M when restricted to h̄+ l̄.

Proof. We prove the statements concerning h′. (a) From 4.3.3 we get h′ 6⊆Wc(l
⊥/l),

while h′ ⊆ Π[Wc−1(M)] = Wc−1(l
⊥/l) by 2.3.6. Since the image of h in Vc−1(M)

is zero, the image of h′ in Vc−1(l
⊥/l) is isotropic. (One may check that the latter

image equals S⊥ ⊆ S, where S is as in 2.3.8(c)). (b) We have seen in the proof

of 4.3.3 that typ(l) = (N) implies Wc(M) = Wc(l
⊥) ⊕ l, and h̃ is the corresponding

projection of h on Wj(l
⊥), which is indeed a line. The proof of typ(h′) = typ(h̃)

is identical to the proof of typ(h′) = typ(h) in 4.3.2. Now if typ(h̃) = (I+), then

the image of h̃ in Vc(M) is both isotropic and perpendicular to l̄, and therefore

perpendicular to all of h̄ + l̄, whence bc,M is degenerate on h̄ + l̄. On the other

hand, if typ(h̃) = (N), then h̄ + l̄ contains two perpendicular non-isotropic lines,

and therefore bc,M is non-degenerate on it. �

Note that this lemma, in conjuction with 4.3.3, completely determines typ(h′)

and typ(l′) in the cases treated, despite the negative formulations. This is because

given h′ ∈ Uj(l
⊥/l) at most two possibilities for typ(h′) remain.

42



4.4 Numerous cases

4.3.5. Proposition. The map {h ∈ Uc(M) | h̄ = l̄ ∧ h 6= l } → P
(
Wc+1(l

⊥/l)
)
given

by h 7→ h′ is a (Zariski-) continuous surjection.

Proof. The map is well-defined by 4.3.3(a), and the set describing its domain

can also be written as P
(
(Wc+1(M) ⊕ l) \ (Wc+1(M) ∪ l)

)
; since 2.3.6 shows that

Wc+1(l
⊥/l) ∼= Wc+1(M) canonically, the map corresponds to projection on the first

factor of Wc+1(M) ⊕ l, and is evidently a continuous surjection. �

4.4. Numerous cases.

Il y a beaucoup de cas à considérer.

N. Spaltenstein, [Spa II.6.25]

We have now collected sufficient information to determine, in all cases under consid-

eration, dominoes d′ and e′ such that, for (f, f ′) in a dense subset of Fu,T × Fu,T ′ ,

we have h′ ∈ Ud′(l⊥/l) and l′ ∈ Ue′(h
⊥/h). There are quite a few cases to be distin-

guished, depending on the dominoes d and e. To facilitate reference to these cases, we

provide them with a fixed numbering.

4.4.1. Definition. Let d and e be two dominoes at the periphery of λ, and let (r, c) =

π(d) and (r′, c′) = π(e). We say that (d, e) falls into one of the following numbered

cases if the specified condition holds. The negation of condition 0 is implicitly assumed

in all other cases.

0 . supp(d) ∩ supp(e) = ∅ (or equivalently c 6= c′).

1 . typ(d) = typ(e) = (N) and mc(λ) > 1.

2 . mc(λ) = 1 (implying typ(d) = typ(e) = (N)) and r > 1.

3 . typ(d) = typ(e) = (I+), mc(λ) > 2 and c > 1.

4 . typ(d) = typ(e) = (I+), mc(λ) = 2 (implying {d} ∈ CT ), and either

4a. sg(d) = sg(e) and r > 2; or

4b. sg(d) 6= sg(e) and c > 1.

5 . typ(d) = typ(e) = (I−) and c > 1.

6 . typ(d) = (I+) and typ(e) = (N).

7 . typ(d) = (N) and typ(e) = (I+).

This list excludes all cases where 4.3.1(a) applies, or where 4.3.1(b) does not apply.

We give those cases a ‘primed’ numbering.

2 ′. mc(λ) = 1 and r = 1.

3 ′. typ(d) = typ(e) = (I+), mc(λ) > 2 and c = 1.

4 ′. typ(d) = typ(e) = (I+), mc(λ) = 2 and either

4 ′a. sg(d) = sg(e) and r = 2; or

4 ′b. sg(d) 6= sg(e) and c = 1.

5 ′. typ(d) = typ(e) = (I−) and c = 1.

The results so far can be summarised in the following table. The first three

columns recapitulate the main characteristics of the cases (and in cases 0 and 4b the

43



4.4 Numerous cases

fourth column serves this purpose as well), the fourth column gives a dense condition

on h and l under which condition the orbits of h′ and l′ can be uniquely determined,

and the remaining columns specify the dominoes that describe those orbits. When

these dominoes coincide, two adjacent entries in the table are merged.

case typ(h) typ(l) mc(λ) condition π(d′) π(e′) typ(d′) typ(e′)

0 ∗ ∗ ∗ c 6= c′ π(d) π(e) typ(d) typ(e)

1 (N) (N) > 1 ⋆ (r − 1, c) (N)

2 (N) (N) 1 † (r − 1, λr−1) ‡

3 (I+) (I+) > 2 h̄ 6⊥ l̄ (tλc−1, c− 1) (I−)

4a (I+) (I+) 2 † (r − 1, λr−1) ‡

4b (I+) (I+) 2 h̄ 6= l̄ (tλc−1, c− 1) (I−)

5 (I−) (I−) ≥ 2 h̄ 6⊥ l̄ (tλc−1, c− 1) (I+)

6 (I+) (N) ≥ 2 h̄ 6⊥ l̄ (r − 1, c) (r, c− 1) (N) (I−)

7 (N) (I+) ≥ 2 h̄ 6⊥ l̄ (r, c− 1) (r − 1, c) (I−) (N)

∗ = any value †: P(h+ l) intersects P
(
Wc+1(M)

)
in its dense Zu-orbit

⋆: h̄ 6= l̄ and bc,M non-degenerate on h̄+ l̄ ‡: if ελr−1
= +1 then (N) else (I−)

4.4.2. Lemma. Assume that (d, e) falls into one of the unprimed cases of 4.4.1. The

condition specified in the table above defines in each case a dense subset of all possible

pairs (h, l), and for all pairs in that subset the lines h′ and l′ are well-defined. For

such h′ and l′, and for dominoes d′, e′ whose attributes are as given in the table, we

have h′ ∈ Ud′(l⊥/l) and l′ ∈ Ue′(h
⊥/h).

Proof. Note that since J(u[l]) and J(u[h]) are known by virtue of 2.3.7, and d′ and e′

lie at their respective peripheries, either coordinate of π(d′) or π(e′) determines the

other. Now case 0 is treated in 4.3.2, case 1 is treated in 4.3.4(b) and cases 3 and 5

are treated by 4.3.4(a), which also treats one half of cases 6 and 7 . The other half

of those cases is treated by 4.3.4(b) because in those cases h̄ 6⊥ l̄ is equivalent to the

condition marked ‘⋆’: given an isotropic line and any other line in h̄ + l̄, that plane

is degenerate if and only if the two lines are perpendicular. (Incidentally this shows

that the conditions in 3 and 5 could also have been rendered as ‘⋆’.) In case 4 the

signs sg(d) and sg(e) determine for h̄ and l̄ respectively which of the two isotropic

lines of Vc(M) they are; therefore h̄ = l̄ if and only if case 4a applies. Case 4b is like

case 3 , except that h̄ 6⊥ l̄ holds always, rather than just on a dense subset. In cases

2 and 4a, where we always have h̄ = l̄, we may apply 4.3.5 to see that for each l the

set of h 6= l for which h′ lies in the dense Zu[l]
-orbit in P

(
Wc+1(l

⊥/l)
)
is dense. In

the canonical identification P
(
Wc+1(l

⊥/l)
)
∼= P

(
Wc+1(M)

)
—which maps Zu[l]

-orbits

to Zu orbits—h′ corresponds to the unique element of P(h+ l)∩P
(
Wc+1(M)

)
, which

appears in the condition ‘†’ of the table; this also shows that the same condition

works for l′ as well. Since Wc+1(l
⊥/l) = Wλr−1

(l⊥/l) ⊃ Wλr−1+1(l
⊥/l), the dense

44



4.4 Numerous cases

Zu[l]
-orbit in P

(
Wc+1(l

⊥/l)
)
is contained in Uλr−1

(l⊥/l), and if ελr−1
= +1, it is

UN
λr−1

(l⊥/l). This completes the proof for cases 2 and 4a. �

Note that this lemma implies in particular that, under the stated condition, the

orbits of h′ and l′ are good. The given table almost, but not quite, allows us to

compute wn by induction, using π1. Recall that in cases 4 and 4 ′, where the Zu-orbit

of l has two connected components, we needed to know in which of these components

l lies in order to distinguish the two subcases. Similarly we need to know in which

component of its Zu[h]
-orbit l′ lies, in case that orbit is not connected, i.e., when

typ(e′) = (I+) and mκe′
(λ′) = 2. Even though, at this point, e′ does not belong to

any tableau, it is natural to specify the connected component by giving sg(e′), because

then for any tableau e′ : S that orbit equals αu′ [Fu′,e′:S ], where u
′ = u[h]. Inspection

of the table shows that the only cases in which we need to specify sg(e′) are 0 and 5 .

If in case 0 the orbit of l′ is not connected, then neither is the orbit of l, and

there is a canonical isomorphism Vc′(M)
∼
→ Vc′(h

⊥/h). This isomorphism maps l̄ to

the image l̄′ of l′; therefore we should take sg(e′) = sg(e) in this case. In case 5 , if

the orbit of l′ is not connected, i.e., when λc−1 = 0, then it follows from 3.4.2 that

for any induced isomorphism h⊥/h
∼
→Mλ′ the image of l′ in Vc−1(h

⊥/h) corresponds

to the image of the special line l+ of the summand M(c−1,c−1); this line belongs to

the domino e′ provided that we put sg(e′) = ‘+’. For definiteness we always put

sg(e′) = sg(e) in case 0 and sg(e′) = ‘+’ in case 5 , whether or not the orbit of l′ is

connected. We can now formulate a partial result.

4.4.3. Lemma. Given the tableau T and the domino e = T ′
1, the final integer wn of

the signed permutation representing w = γ(Fu,T ,Fu,T ′) can be computed as follows.

Put d = T1, and determine the case of 4.4.1 that (d, e) falls into. If this is a primed

case then wn = |d| in cases 2 ′ and 4 ′a, and wn = −|d| in cases 3 ′, 4 ′b, and 5 ′.

Otherwise let e′ be a domino whose position and type are given by the table for the

case applying, and whose sign is given by the rule stated above; then repeat this

computation replacing the pair (T, e) by (T ↓, e′).

Proof. In view of 4.1.3 and the definition of π2, the claim can be reformulated

as follows: for (f, l) in a dense subset of Fu,T × αu[Fu,T ′ ] the computed value wn

equals π1(f, l). We shall prove for any chosen l ∈ αu[Fu,T ′ ], that there is a dense

subset Dl of Fu,T such that π1(f, l) = wn for all f ∈ Dl. Now if one of the

primed cases applies then we take Dl = Fu,T if wn = |d|, or Dl =
⋃

h 6⊥l α
−1
u [h] if

wn = −|d|, and the claim follows from 4.3.1 and the definition of π1. Otherwise

the table specifies a dense condition on h ∈ αu[Fu,T ] (for fixed l), under which by

4.4.2 l′ is defined and l′ ∈ Ue′(h
⊥/h). It suffices to prove that π1(f, l) = wn for

any such h and f in a dense subset of α−1
u [h] ∩ Fu,T , for then we can take Dl to be

the union over h of these subsets. If α−1
u [h] ∩ Fu,T has two connected components

we prove this separately for each of them. We choose an isomorphism that maps

h to the special line belonging to d and such that f↓ ∈ Fu′,T↓ with u′ = u[h] for
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all f in the considered component. This is possible by 3.5.1, and the map f 7→ f↓

is an isomorphism of that component to Fu′,T↓ . From the discussion of sg(e′) it

follows that l′ lies in αu′ [Fu′,e′:S ] for any tableau S of appropriate shape. We may

now apply induction to T ↓ and e′, which gives a dense subset Dl′ of Fu′,T↓ such

that π1(f
↓, l′) = wn for all f↓ ∈ Dl′ . Since π1(f, l) = π1(f

↓, l′) by definition

of π1 this establishes the claim. Note that by construction Dl is (Z◦
u)l -stable. �

This lemma and its proof illustrate the line of reasoning we shall use, but in itself

the lemma is of limited use, since it fails to give information about the flag f[l] in l
⊥/l.

In order to proceed according to the definition of π2, we would like to find a tableau T[e]
such that for all l, and for f in a dense subset of Fu,T , we have f[l] ∈ Fu[l],T[e]

. Now

such a tableau exists if and only if we have f[l] ∈ F̃u[l]
on a dense set, and as we shall

see presently this is in fact the case, following by induction from the fact that—for

f in a dense set—h′ lies in a good orbit. The condition f[l] ∈ Fu[l],T[e]
assumes the

choice of some induced isomorphism l⊥/l
∼
→Mµ with µ = J(u[l]), and we require that

it is such that also f ′↓ ∈ Fu[l],T ′↓ . The latter requirement however, is impractical since

it involves the flag f ′, while at this point we are dealing with f and l only. But since

sg(e) is given, and thereby the special line to which l should be mapped, the class

of induced isomorphisms l⊥/l
∼
→ Mµ is determined up to the action of the group K

of 3.1.2. Moreover, assuming the existence of T[e], K will act trivially on
[
T[e]

]
because

the dense subset of Fu,T in which f should lie may be taken to be (Z◦
u)l -stable, in

which case the same holds for the set of flags f[l]. In view of this fact the condition

that T[e] must satisfy can be formulated simpler: for f in a dense subset of Fu,T we

must have l : f[l] ∈ Fu,e:T[e]
.

We shall now determine T[e] (which also proves its existence). Let l ∈ αu[Fu,T ′ ]

be chosen arbitrarily, and let f lie in the subset Dl of the proof of 4.4.3; it will not

be necessary to make any further restrictions. If we have wn = |d| then h = l and

f[l] = f↓, and therefore we may take T[e] = T ↓. If we have wn = −|d| then h 6⊥ l

and we have canonical isomorphisms h⊥/h
∼
← (h + l)⊥

∼
→ l⊥/l. It is easily verified

that via these isomorphisms one and the same flag corresponds to f↓ and to f[l].

Also the plane h + l is an orthogonal direct summand of M , and there exists an

automorphism of h+ l that interchanges h and l; it extends to an automorphism of M

that interchanges f = h : f↓ and l : f[l]. In case 5 ′ this automorphism appears in Z◦
u,

so we may take T[e] = T ↓ in this case too. In cases 3 ′ and 4 ′b this automorphism

represents g1 ∈ Au, whose action on [T ] affects the sign of cl(d), so we may take

T[e] = T ↓ provided that sg(d) 6= sg(e). Now in case 4 ′b this always holds, and if in

case 3 ′ we have sg(d) = sg(e), then we can replace T by another representative T̃

of [T ] for which sg(T̃1) 6= sg(e)—which is possible since {d} 6∈ CT—and then take

T[e] = T̃ ↓.

We have now determined T[e] in the terminating cases of the recursive computation

in 4.4.3, but the other cases are more difficult. It turns out that we can build up T[e]
on the “way back” of that recursion. As remarked before, h′ is the 1 dimensional part
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of f[l]. The other parts of f[l] are determined by the relation

f[l]
↓ = f↓[l′], (29)

where both sides are considered as flags in L⊥/L with L = h+ l. This relation is a spe-

cial case of the more general equality f[l][h′] = f[h][l′] that holds for any f ∈ F , whether

or not h = f1: for the part labeled by i we have f[l][h′]
i = ((f i ∩ l⊥ + l)∩h⊥ +h)/L =

(f i ∩ L⊥ + L)/L and similarly f[h][l′]
i = (f i ∩ L⊥ + L)/L. Since we have already

determined the domino d′ that describes the Z◦
u[l]

-orbit of h′, it follows that we can

determine the position of f[l] once we have done so for f↓[l′].

Assume a tableau S is determined such that l′ : f↓[l′] ∈ Fu[h],e′:S for the chosen

class of isomorphisms h⊥/h
∼
→ Mλ′ (the ‘systematic’ name for S would be T ↓

[e′]).

Then by (21) we have h : l′ : f↓[l′] ∈ Fu,d:e′:S . We shall determine a tableau S̃ and

sg(d′) such that l : f[l] = l : h′ : f[l]
↓ ∈ Fu,e:d′:S̃ . This is achieved by applying 3.5.2

to the pair (h : l′ : f↓[l′], l : h′ : f[l]
↓) of flags. In order to do so we must have

sg(d) 6= sg(e) in case 3 , which can be achieved, as in case 3 ′, by modifying T within

its class if necessary. We assume that such an appropriate T has been chosen, and

that all dependent objects (in particular S) are adapted to this choice. Then using

3.5.2 we find the following result. The sign sg(d′) is defined analogously to sg(e′),

namely sg(d′) = sg(d) in case 0 , sg(d′) = ‘+’ in case 5 , and sg(d′) = ‘◦’ otherwise;

also put |d′| = |d|. In case 3 put S̃ = ξr(S) where r =
tλc−1, and likewise in case 6 if

sg(d) = ‘−’ and in case 7 if sg(e) = ‘−’; in the other cases put S̃ = S. Then indeed

l : f[l] ∈ Fu,e:d′:S̃ , and therefore T[e] = d′ : S̃ is as required. We have proved the

following statement.

4.4.4. Lemma. Let l ∈ αu[Fu,T ′ ] and f ∈ Dl ⊆ Fu,T as in the proof of 4.4.3. Let

T[e] be computed from T and e = T ′
1 as described above, where in the applicable

cases S is computed recursively by the same procedure with (T ↓, e′) replacing (T, e).

Then for any isomorphism l⊥/l
∼
→ Mµ induced by an isomorphism M

∼
→ Mλ sending

l to the special line belonging to e, we have f[l] ∈ Fu[l],T[e]
. �

4.5. Recursive algorithms.

“Mine is a long and sad tale!” said the Mouse,

turning to Alice and sighing.

“It is a long tail, certainly,” said Alice,

looking down with wonder at the Mouse’s tail;

“But why do you call it sad?”

Lewis Carroll, Alice in Wonderland

Up to this point we have been rather informal in our description of recursive computa-

tions. The level of complexity that has been reached, however, justifies a more formal

approach. We shall use a formalism that bears resemblance to the kind of algorithmic

languages that are used in computer science, in particular to those called ‘functional

programming languages’, but we shall keep as close as possible to the conventional
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mathematical notation. (See [Ba-vL] for an introduction to functional programming,

and for a complete and formal description of such a language, “TALE”, after which

our formalism is modelled; however, we assume no acquaintance with this subject.)

Algorithms will be specified as functions, by giving for each one an equation whose

left-hand side is the name of the function applied to a formal parameter (or a tuple

of formal parameters), and whose right-hand side is an expression giving the function

value expressed in terms of that parameter. The algorithmic nature of the definition

lies in the fact that the right-hand side may contain (recursive) applications of the

function being defined. Such applications must occur at a position that is needed only

conditionally, and moreover it is necessary that the arguments of those applications

are simpler in some respect than the initial one, lest the computation would fail

to terminate. The algorithm may then be performed, for some given argument, by

evaluating the right hand side, and performing any recursive applications separately

when needed.

We evidently need to have conditional expressions. The usual way of specifying

these, cf. (25), becomes unwieldy when it is embedded in another expression. Therefore

we shall use the following notation instead: ‘if C then E1 else E2 fi’, where C is

a condition and E1 and E2 are expressions denoting values of the same kind. The

meaning of this expression is simple: the condition is evaluated; if it is true then the

value of the conditional expression is that of E1, and else it is that of E2 (the ‘fi’

indicates the end of the conditional part). Another kind of expression that will be

very useful is the local definition. Recall that we have frequently used variables like

h and l that depend on others (viz. f and f ′), where their relationship is explained

in the accompanying text. However, when we need variables in the right-hand side of

a function definition that depend on its parameter, then we need a formal notation

to express this relationship. In such a circumstance we shall write ‘let V = E1

in E2’. Here V is the newly defined variable, whose value is given by the expression

E1, which may depend on any other variables that are defined at that point, and the

expression E2, in which V may be used, gives the final value to be yielded. A local

definition has no closing symbol, but we shall take for E2 the longest single expression

that follows ‘in’; it is not uncommon that E2 itself starts with ‘let. . . ’, in which case

we contract the sequence ‘in let’ to ‘;’. Using these expressions we can now give a

formal definition of π1, that was defined informally in 4.1:

π1(f, l) = let m = max
(
I(f)

)
; h = f1; l

′ = l + h/h in

if h = l then m else if h ⊥ l then π1(f
↓, l′) else −m fi fi.

(30)

Note that we freely included the usual notations into the new formalism. We can

similarly formalise the definition of π2, but since it yields a sequence of numbers,

we need expressions that construct such sequences. For this purpose we extend the

notation adopted for tableaux to lists or sequences in general: ‘⊙’ denotes the sequence

without any terms, while ‘x : t’ denotes the sequence (x, t1, . . . , tm) with the term x
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as its “head”, and the (possibly empty) sequence t = (t1, . . . , tm) as its “tail”. We

shall also use an operator ‘&’ for extension of a sequence at the right-hand side: t& x

means (t1, . . . , tm, x). The definition of π2 is now

π2(f, f
′) = if I(f) = {0} then ⊙ else let l = f ′1 in π2(f[l], f

′↓) & π1(f, l) fi. (31)

Just as an example of a recursive definition dealing with sequences, taking them

apart as well as putting them together, we write ‘&’ in terms of the other operations:

t& x = if t = ⊙ then x : ⊙ else let (y : t′) = t in y : (t′ & x) fi. (32)

This also illustrates a new use of the local definition: when the expression at the right

of the ‘=’ denotes a structured object, the variable being defined may be replaced by

an expression containing newly defined variables (in this case y and t′) and displaying

(part of) that structure; the new variables are defined to be equal to the corresponding

component of the expression at the right. We shall only use expressions of the form

‘(x : t)’ (for a non-empty sequence) or of a form like ‘(x, y, z)’ (for an element of a

cartesian product) to replace the variable (the form (t&x) is also used in appendix A).

A similar rule applies to variables being introduced as a formal parameter of a function;

in this case any actual argument of the function must be similarly structured, and the

new variables represent its components. Because of this rule there is no need to make

a formal distinction between functions with single and multiple parameters.

There are two more constructions that will prove to be quite useful, even though

they are not indispensible. Both have a bearing upon the distinction of several cases,

an activity that we have been performing rather frequently, and shall continue to do

in the sequel. If the cases are numerous, the conditional expression discussed above

may become cumbersome, and therefore we generalise it in the following way. We

may write ‘case C1:E1, . . . , Cm:Em esac’, where C1, . . . , Cm are complementary

conditions (exactly one of them is true), and E1, . . . , Em are expressions denoting

values of one and the same kind. When condition Ci is true then the value of the

case-expression is that of Ei.

The other construction is used when, in different cases, values of different kinds

are to be yielded. For instance, the basic step of the procedure in 4.4.3 yields a different

kind of value in the primed cases (namely a number wn) than in the unprimed ones

(namely a domino e′). In such cases, we may label the values with a ‘tag’ indicating

which case applies; the meaning of each of the tags will be explained in the text. A tag

is a short string (set in a different typeface than variables are) that is written before

the expression it applies to, as if it denoted a map (indeed it may be viewed as an

injection map into a disjoint union of sets). For instance, stop(wn) is a tagged value,

where the value wn is tagged by stop in order to indicate that a terminating case has

been reached. If in a certain case there is no further value to be yielded, the tag may

be written all by itself, simply indicating the case that applies. In order to unravel
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these tagged values again, we use a special variant of the case-expression, which has

the form ‘case E of t1(V1):E1, . . . , tm(Vm):Em esac’; the keyword ‘of ’ distinguishes

this variant from the ordinary case-expression. Here E and the Ei are expressions, the

ti are distinct tags, and the Vi are defining positions of variables (like the left-hand

side of a local definition), whose scope is the corresponding Ei. The expression E

should yield a tagged value, where the tag matches one of the tags t1, . . . , tn; when

that value is ti(x), say, then the value of the whole case-expression equals that of

‘let Vi = x in Ei’.

We are now ready to formalise the procedures described earlier. In the first

place we define the function ξ, that performs the action of the operations ξr that

were introduced below 3.3.2; the subscript r now appears as the first parameter. The

second parameter is a tableau; it should have a shape λ for which ελr
= +1 since ξ

should represent the action of an element of Au, but this condition is not tested.

ξ(r, T ) = if T = ⊙ then ⊙

else let (d : T ↓) = T ; i = ρd in

if typ(d) = (I+) ∧ r ∈ {i− 1, i}

then dom
(
π(d), (I+), |d|,− sg(d)

)
: T ↓

else d : ξ(r, T ↓)

fi

fi

(33)

Note that we use T ↓ as an ordinary variable rather than as an operator ‘↓’ applied

to T , but that its value agrees with the outcome of that operation; in choosing variable

names we shall use the convention that all variables with names containing ‘↓’ will be

related similarly to the ones without.

Next we come to some auxiliary functions for the main case analysis as described

in 4.4. These will be used to determine appropriate dominoes in either a given row or

a given column of a diagram Y (λ). The first is needed when we are moving upwards

in the diagram, as in cases 1 , 2 and 4a, and this function will be called Υ (Upsilon

for ‘up’). The second is needed when we are moving to the left, as in cases 3 , 4b

and 5 , and this function will be called Λ (for ‘left’). Both functions return a tagged

value, which is either of the form ‘stop(wn)’ indicating that wn is directly determined,

or of the form ‘cont(d′, e′, ω)’ otherwise (the tag abbreviating ‘continue’). Here d′

and e′ are dominoes as before—in fact the entry |e′| has no significance, and since

for the rest d′ ≈ e′ in these cases, we have simply put e′ = d′—and ω tells whether

a modification is to be made in passing from T ↓
[e′] to T[e]

↓ in the procedure of 4.4.4

(where these tableaux are called S and S̃ respectively). It is another kind of tagged

value, that is either ‘flip(r)’ indicating that ξr should be applied, or ‘none’ if no

action is required. The parameters of Υ and Λ are triples, consisting of a shape λ,

a row- or column-number (i or j), and an entry x to put into the domino d′. The

construction and inspection of the flip/none-tagged values is facilitated by two more

auxiliary functions g, g′.
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g(C, i) = if C then flip(i) else none fi (34)

g′(ω, S) = case ω of none:S, flip(r): ξ(r, S) esac (35)

Υ(λ, i, x) = if i = 0 then stop(+x)

else let j = λi
; d′ = dom

(
(i, j), if εj = +1 then (N) else (I−) fi, x, ‘◦’

)

in cont(d′, d′, none)

fi

(36)

Λ(λ, j, x) = if j = 0 then stop(−x)

else let i = tλj
; (α, δ) = if εj = +1 then ((I+), ‘+’) else ((I−), ‘◦’) fi

; d′ = dom
(
(i, j), α, x, δ

)
in cont

(
d′, d′, g(εj = −1, i)

)

fi

(37)

Now we come to the main case analysis itself; it is given as the function φ0
(here the subscript counts the levels of recursion). It takes as parameters a triple

of a shape and two dominoes, and returns a pair, of which the first component is

the same sort of value as returned by Υ and Λ. The second component of the pair is

another value tagged by flip or none, and it indicates whether a different representative

of T should be chosen (in cases 3 , 3 ′); in fact it will be used to modify T ↓ before

recursion is applied. The interpretation of the parameters of φ0 is as suggested by

their names. Enclosed in square brackets we have added as comments the numbers

of the corresponding cases according to 4.4.1; the primed cases are not included, but

they take the same branch as the corresponding unprimed ones.

φ0(λ, d, e) = if π(d) 6= π(e) then
(
(d, e, none), none

)
[case 0 ]

else let (r, c) = π(d) in

case typ(d) = typ(e) = (N):
(
Υ(λ, r − 1, |d|), none

)
[cases 1,2 ]

, typ(d) = typ(e) = (I+):

if mc(λ) = 2 ∧ sg(d) = sg(e)

then
(
Υ(λ, r − 2, |d|), none

)
[4a]

else
(
Λ(λ, c− 1, |d|), g(sg(d) = sg(e), r − 2)

)
[3,4b]

fi

, typ(d) = typ(e) = (I−):
(
Λ(λ, c− 1, |d|), none

)
[5 ]

, {typ(d), typ(e)} = {(I+), (N)}:

let a = dom
(
(r − 1, c), (N), |d|, ‘◦’

)

; b = dom
(
(r, c− 1), (I−),|d|, ‘◦’

)
in

if typ(d) = (I+)

then
(
cont(a, b, g(sg(d) = ‘−’, r)), none

)
[6 ]

else
(
cont(b, a, g(sg(e) = ‘−’, r)), none

)
[7 ]

fi

esac

fi

(38)
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Now we are ready to formalise the recursive procedures of 4.4.3 and 4.4.4; they are

combined into a single function φ1. Its first argument (T ) must not be ⊙.

φ1(T, e) = let λ = sh(T ); (d : T ↓) = T

; (α, ω1) = φ0(λ, d, e); T̃
↓ = g′(ω1, T

↓) in

case α of stop(wn): (T̃
↓, wn)

, cont(d′, e′, ω2): let (S,wn) = φ1(T̃
↓, e′); S̃ = g′(ω2, S)

in (d′ : S̃, wn)

esac

(39)

Finally we define the function φ2, that is intended to compute γ(Fu,T ,Fu,T ′). At this

point its definition is a rather obvious guess, but we shall see that it is more difficult

to prove that this guess is correct.

φ2(T, T
′) = if T = ⊙ then ⊙

else let (e : T ′↓) = T ′; (T[e], wn) = φ1(T, e) in φ2(T[e], T
′↓) & wn

fi

(40)

One should check that the definitions up to (39) formalise the computations of

4.4. We note a few points that have taken a slightly different form. As already

indicated, a number of cases have been merged, because their results can be given

by the same expression. When T had to be modified to obtain sg(d) 6= sg(e) (cases

3 , 3 ′), we have used that applying ξr ◦ ξr−2 is certainly a valid way to achieve such a

modification, and furthermore that
(
ξr ◦ ξr−2(T )

)↓
= ξr−2(T

↓) in these cases. Having

checked the combinatorial correctness of the definition of φ1, we are ready to give a

formal restatement of 4.4.3 and 4.4.4, which gives the geometric significance of φ1.

4.5.1. Theorem. Let n > 0 and λ = J(u) for a unipotent element u ∈ G, and let

a class of k[u]-module isomorphisms M
∼
→ Mλ be given. Let T, T ′ be tableaux with

sh(T ) = sh(T ′) = λ, put d = T1, e = T ′
1, and let (T[e], wn) = φ1(T, e). Choose any

l ∈ αu[Fu,T ′ ], and any isomorphism in the given class that maps l to the special line

belonging to e; we use the class of isomorphisms l⊥/l
∼
→ Mµ induced by it, where

µ = sh(T ′↓) = sh(T[e]). There exists a dense (Z◦
u)l -stable subset Dl of Fu,T such that

π(f, l) = wn and f[l] ∈ Fu[l],T[e]
for all f ∈ Dl.

Proof. The set Dl is the same as the one given in the proof of 4.4.3. Since this is

also the set occurring in 4.4.4, the theorem follows directly from those two lemmas,

granted that φ1 correctly formalises their computations. �

Remark. It is not generally true that the union of all sets Dl—for l traversing

αu[Fu,T ′ ]—equals Fu,T ; e.g., in case C2 with T =
�

1
�

2 and T ′ =
�

1
�

2 , we have FT 6∈ Dl

for the unique choice of l, since π(FT , l) = 1 while w2 = −1 in this case. Therefore it

would be wrong to fix f instead of l.

We define D[l] = { f[l] | f ∈ Dl }, then by definition D[l] ⊆ Fu[l],T[e]
. However, we

have the following
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4.5.2. Disappointment. In general, D[l] is not dense in Fu[l],T[e]
.

Proof. It is sufficient to show that in the unprimed cases the 1-dimensional part h′

of f[l] does not range over a dense subset of Ud′(l⊥/l) in all cases. For instance,

if in case 0 we have κd < κe then h′ = Π[h] =⊆ Π[Wc(M)], where according

to 2.3.6(a,c) the latter space has codimension 1 in Wc(l
⊥/l). Cases 3 and 4b are

even worse, since the codimension of Π[Wc(M)] in Wc−1(l
⊥/l) is 1 +mc−1(λ), which

can be arbitrarily large. �

Due to this fact, there is no easy way to prove our main theorem that states—as

formulated below—that φ2 computes what it is meant to. There are (at least) two

ways to complete such a proof. One is to use 4.2.2, in combination with the fact

that generic relative positions are maximal, i.e., that for any x ∈ X and y ∈ Y

we have π(x, y) ≤ γ(X,Y ), where ‘≤’ denotes the Bruhat order. One then has

to prove that φ2 is surjective onto W̃ , and that it is constant on diagonal Au-

orbits, from which one concludes that φ2 differs from the correspondence defined

by γ, by left-composition with a permutation p of W̃ , which has p(w) ≤ w for all

w ∈ W̃ , so that p can only be identity. The surjectivity of φ2 can be proved by

constructing a right-inverse of it by combinatorial means. A similar proof is given

in [St3] for the An-case (where one uses the well-known bijectivity of the Robinson-

Schensted correspondence), but we shall choose to use a different approach. This

does not use 4.2.2, and gives a better a priori understanding of why things go well

in spite of 4.5.2; apart from this the first approach is less attractive than in the

An-case, because it is combinatorially much more complicated (cf. the remarks in

appendix C).

The other approach, which we shall follow, is based on the following observation.

Call a subset of any set associated with a given k[u]-module N characteristic if it

is stable under Aut(N)◦; e.g., Fu,T and the union of all Dl are characteristic in Fu.

Now the main reason for our disappointment is that l⊥/l is endowed with many non-

characteristic subsets—such as Π[W1(l
⊥)] and its relatives described in 2.3.6—in terms

of which closed conditions holding on D[l] can be formulated; consequently D[l] itself

is not characteristic in Fu[l],T[e]
. But the set of flags in Fu[l],T[e]

that are bad (i.e., non-

generic with respect to π2) for all choices of f ′↓ ∈ α−1
u [l] is certainly characteristic

and closed, and it would be sufficient to prove that D[l] cannot be contained in any

such set. Therefore we state the following theorem.

4.5.3. Theorem. Any characteristic subset of Fu[l],T[e]
that contains D[l] is dense.

The proof of this theorem is somewhat involved—although not much combina-

torially so—and it is deferred to the next section; essentially it deals with a way of

reconstructing, up to isomorphism, M from l⊥/l, by methods that are more-or-less

dual to the ones used above. At this point we show how it implies our
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4.5.4. Main Theorem. Let T and T ′ be two tableaux of shape λ = J(u), and let

the signed permutation (w1, . . . , wn) = φ2(T, T
′), as defined in (40), represent w ∈ W̃ .

Then for any isomorphism M
∼
→Mλ we have γ(Fu,T ,Fu,T ′) = w.

Proof. We perform induction on n; the case n = 0 is trivial. It will be sufficient to

show for each l ∈ αu[Fu,T ′ ] that π2(f, f
′) = φ2(T, T

′) holds for (f, f ′) in a dense subset

of Fu,T × (Fu,T ′ ∩α−1
u [l]). In case #Con(Fu,T ′ ∩α−1

u [l]) = 2 we prove this separately

for each of the connected components, so let C be one of these components. Choose an

induced class of isomorphisms l⊥/l
∼
→Mµ such that f ′↓ ∈ Fu′,T ′↓ for allf ′ ∈ C, where

u′ = u[l]. We apply induction to u′, l⊥/l and the tableaux T[e] and T
′↓; we obtain the

existence of a dense open subset ∆ of Fu′,T[e]
× Fu′,T ′↓ such that for all (f̃ , f ′↓) ∈ ∆

we have π2(f̃ , f
′↓) = (w1, . . . , wn−1). Now using 4.5.1, putting D = Dl × C, and

denoting by β the map D → Fu′,T[e]
× Fu′,T ′↓ sending (f, f ′) 7→ (f[l], f

′↓), it will be

sufficient to prove that β−1[∆] is dense in D. Since ∆ is open and D is irreducible,

this will follow if β−1[∆] is non-empty. The image of the projection of ∆ on the first

factor Fu′,T[e]
is a characteristic dense open set, and it must therefore meet D[l] by

4.5.3 (its complement cannot contain D[l]). Any element of ∆ that projects to a point

in the intersection lies in Im(β)∩∆, whence β−1[∆] 6= ∅, which completes the proof. �

Conversely to the suggested first approach to the proof, we may now use 4.2.2 to

conclude the basic combinatorial properties of φ2.

4.5.5. Corollary. Let P, P ′, Q,Q′ ∈ Tλ, and a ∈ Au.

(a) If P ∼ P ′ and Q ∼ Q′ then φ2(P,Q) = φ2(P
′, Q′). We write φ2([P ], [Q]) for this

value.

(b) φ2(a · [P ], a · [Q]) = φ2([P ], [Q]).

(c) φ2(Q,P ) = φ2(P,Q)−1.

(d) The disjoint union over all occurring Jordan types λ of the set of diagonal Aλ-

orbits of equivalence classes of tableaux in Tλ is in bijection via φ2 with W̃ ∼= Hn.

Proof. This immediate from 4.2.2 and 4.5.4, using (27) for part (c). �

It follows from 4.5.5(d) that there exists a right-inverse to φ2, i.e., a map ψ2 say,

such that φ2 ◦ ψ2 is the identity on Hn. In fact ψ2 can be given algorithmically. We

shall not define ψ2 formally as we have done for φ2 however, but appendix C contains

a computer program with a routine that performs such an algorithm, and a discussion

of how it has been obtained.

4.6. Proof of 4.5.3.

For the proof of 4.5.3, we shall need a number of lemma’s. In what follows we

have (T[e], wn) = φ1(T, e), and we consider a non-degenerate k[u]-module N with

J(N) = µ = sh(T[e]). Certain variables will denote other objects than before, in

particular we shall study flags f ∈ FuN ,T[e]
. Let x ∈ I(f) ∐ −I(f) be such that
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|x| = max { i ∈ I(f) | i < |wn| } and sg(x) = sg(wn) (there is no fwn , so fx is the

part that comes closest to it). Recall that κd is the rightmost column meeting the

domino d; we shall frequently need to consider also the leftmost column meeting d,

which is related to κd as j′ is to j in 2.3.6, and we shall therefore denote it as κ′d.

4.6.1. Lemma. Let c = κ′e and f ∈ FuN ,T[e]
for a class of isomorphisms N

∼
→Mµ.

(a) fx ⊇Wc(N).

(b) If typ(e) = (I−), c > 1, and mc−1(µ) = 2 then, for any isomorphism in the given

class, fx contains the line corresponding to the special line l+ in the (unique)

summand M(c−1,c−1) of Mµ.

Proof. (a) We use induction on the definition of φ1; let the variables occurring in (39)

be as defined there, and consider the case that (d, e) falls into. If this is a primed case,

then we have either wn = |d|, in which case c = µ1 + 1 so Wc(N) = 0 (= fx),

or wn = −|d|, in which case fx = N ; in both cases (a) is trivially true. In the

unprimed cases put p = f1, then p ∈ Ud′(N) and f↓ ∈ Fu[p],S̃
by (39). Part (a) of the

induction hypothesis gives f↓x ⊇Wc′(p
⊥/p), where c′ = κ′e′ (we use here that part (a)

is invariant under automorphisms of N applied to f , hence the transition from S to S̃

has no effect). Now fx = Π−1[f↓x], where Π is as in 2.3.6 for l = p, so (a) will

follow from the same part of the induction hypothesis if Wc(N) ⊆ Π−1[Wc′(p
⊥/p)], or

equivalently Π[Wc(N)] ⊆ Wc′(p
⊥/p)]. We can apply 2.3.6 (with j = κd′ since l = p)

to obtain this inclusion in the following cases. In case 0 we have c = c′ 6= j, so

Π[Wc(N)] = Π[Wc(p
⊥)] ⊆Wc′(p

⊥/p); in cases 3 , 4b, 5 and 7 we have c′ = c− 1 = j,

so Π[Wc(N)] = Π[Wc(p
⊥)] = Wc(p

⊥/p) ⊆ Wc′(p
⊥/p); in case 6 we have c′ = c =

j − 1 so Π[Wc(N)] = Π[Wc(p
⊥)] = Wc′(p

⊥/p); and finally in cases 1 , 2 and 4a if

typ(d′) = (N) then c ≤ c′ = j − 1 and tµc = tµc′ , so Π[Wc(N)] = Π[Wc′(N)] =

Π[Wc′(p
⊥)] = Wc′(p

⊥/p). So we are left with cases 2 and 4a with typ(d′) = (I−). In

those cases c < c′ = j and tµc = tµc′ , and since S̃ = S in (39) we may apply 3.4.2 to

d′ and µ, which gives, in combination with part (b) of the induction hypothesis, that

g↓x ⊇ Π[Wc′(N)] = Π[Wc(N)], proving (a).

(b) We proceed as above, but the only relevant cases are 0 and 5 . In case 0 ,

because mc−1(λ) = 0 we have j 6∈ {c, c− 1}, and hence by 2.3.8(d) there is a natural

isomorphism Vc−1(N) ∼= Vc−1(p
⊥/p), so (b) follows by induction in this case. In

case 5 we have sg(d′) = ‘+’ from (37), so the image of p in Vc−1(N) coincides with

that of the line l+, which directly implies (b). �

When typ(e) = (I−) we can say even more about fx. The next lemma supple-

ments the previous one.

4.6.2. Lemma. Assume that, in the situation of 4.6.1, typ(e) = (I−).

(a) If c = 1, then for every q ∈ N with q ⊥ ηN [fx] we have q ⊥ ηN (q).

(b) If c > 1, then let P denote the image of fx in Vc−1(M); the subspace P⊥ ⊂

Vc−1(M) is isotropic.
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Proof. We use the same notation as in the previous proof, and let p̄ be the image

of p in Vj(N); if j = c − 1 we have p̄ ⊆ P . (a) We are in case 0 or 5 ′. In

case 5 ′ we have fx = N , so q ∈ Im(ηN )⊥ = Ker(ηN ), whence (a) is trivially satisfied.

In case 0 we have κ′d′ ≥ 2 so by 2.3.6(b) p ⊆ W2(p
⊥) ⊆ ηN [p⊥], and for any

r ∈ η−1
N [p] ∩ p⊥ we have Π(r) ∈ W1(p

⊥/p) ⊆ f↓x by 4.6.1(a), so that r ∈ fx and

p ⊆ ηN [fx]. Therefore q ⊥ ηN [fx] implies q ∈ p⊥, and we may apply Π, which gives

Π(q) ⊥ η[p][f
↓x], and (a) follows by induction. (b) Here we are in case 0 or 5 . In

case 5 we have c′ = c − 1 = j and fx = Π−1[f↓x] ⊇ Π−1[Wj(p
⊥/p)] = Wj(p

⊥); by

2.3.8(a) the image in Vj(N) of the latter space, which is contained in P , equals p̄⊥,

establishing (b). In case 0 let P ′ ⊆ Vc−1(p
⊥/p) be the image of f↓x, so that P ′⊥ is

isotropic by induction. Assume first that j 6= c− 1, then by 2.3.8(d) there is a natural

isomorphism Vc−1(N) ∼= Vc−1(p
⊥/p) for which P corresponds to P ′, giving (b). If

j = c − 1 and typ(d′) = (N), we have from 2.3.8(b) that Vj(p
⊥/p) ∼= p̄⊥ ⊇ P⊥,

and P⊥ corresponds to P ′⊥. Finally if j = c − 1 and typ(d′) = (I+), we have

from 2.3.8(c) that Vj(p
⊥/p) ∼= p̄⊥/p̄, and the image of P⊥ in p̄⊥/p̄ corresponds to

P ′⊥, so that (b) is established in this last case as well. �

Next, we shall consider extensions of the k[u]-module N , i.e., we shall construct

k[u]-modules M̃ such that N ∼= l⊥1/l1 for some isotropic line l1 ⊆ M̃ . As underlying

vector space of M̃ we take k ×N × k, where the lines corresponding to the first and

last factors are called l1 and l2 respectively. The bilinear form b
M̃

is determined by

the requirements that its restriction to N is bN , that l1 ⊕ l2 ⊥ N , that l1 and l2
are isotropic, and that for the basis vectors v1, v2 in l1 and l2 respectively we have

b
M̃
(v1, v2) = 1 = εb

M̃
(v2, v1). It follows that l⊥1 = l1 ⊕ N , and we identify l⊥1/l1 via

the canonical isomorphism with N . We require that the unipotent transformation

ũ = u
M̃

stabilises l1, and induces uN in N , whence it must be of the general form

expressed by the block-matrix

ũ =




1 ν a

0 uN p

0 0 1


 , (41)

with ν ∈ N∗, a ∈ k, and p ∈ N . The fact that b
M̃

is preserved by ũ is expressed by

the relations

ν(y) + bN (uN (y), p) = 0 for all y ∈ N , (42)

and

(1 + ε)a+ bN (p, p) = 0, (43)

where the latter equation is trivially satisfied if ε = −1. We wish to express the

relationship between J(ũ) and J(uN ) as given by 2.3.7 in terms of ν, a, and p. There

are two cases that require different symbols to be introduced. First, if Ker(ηN ) ⊆

Ker(ν) then there exists a unique ν̂ ∈ Im(ηN )∗ such that ν = ν̂ ◦ ηN , and by (42) we
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have p ∈ Ker(ηN )⊥ = Im(ηN ). Otherwise, if Ker(ηN ) 6⊆ Ker(ν), we shall see that only

the restriction of ν to Ker(ηN ) matters, or equivalently the image of p in N/ Im(ηN ).

Let m = max { i |Wi(N) 6⊆ Ker(ν) }, then ν induces a non-zero element ν̄ ∈ Vm(N)∗.

By (42) we also have p ∈ Ker(ηmN )+Im(ηN ), so that its image in N/ Im(ηN ) lies in the

image of Ker(ηmN ), and ηm−1
N induces an isomorphism from the latter image to Vm(N);

let p̄ ∈ Vm(N) be the image of p obtained in this way.

4.6.3. Lemma. In the situation above, J(ũ) is obtained from J(uN ) by first replac-

ing a part j′ − 1 by a part j′, and then replacing a part j − 1 by a part j, where j′, j

are as follows.

(a) If Ker(ηN ) ⊆ Ker(ν) then j′ = 1. In this case if a = ν̂(p) then j = 1 and else

j = 2. Also, if ε = −1 we have for any q ∈ η−1
N [p] that ν̂(p) = bN (p, q), and

q ⊥ Ker(ν̂) = ηN [Ker(ν)].

(b) If Ker(ηN ) 6⊆ Ker(ν) then j′ = m + 1. In this case if ν̄(p̄) = 0 then j = j′ and

else j = j′ + 1. Also Ker(ν̄) = p̄⊥, so j = j′ if and only if p̄ is isotropic.

Proof. We apply 2.3.7 to M̃ and l1, and use 2.3.6 to determine j′, and j. We

get from 2.3.6(b) that j′ = max { i | l1 ⊆Wi(l
⊥
1 ) }, and this can be rewritten as

j′ = max { i | i = 0 ∨Wi(N) 6⊆ Ker(ν) } + 1, which is in accordance with the values

given in both parts. We have j ∈ {j′, j′+1} where j = j′+1 if and only if l1 ⊆ Im(η̃j
′

),

where η̃ = η
M̃
. We proceed separately for both cases. (a) Here l1 ⊆ Im(η̃) if and only

if there is some q ∈ N such that η̃(v2−q) is a non-zero vector in l1. For such q we must

have ηN (q) = p so that ν(q) = ν̂(p), and η̃(v2−q) = (a− ν̂(p))v1, independently of the

choice of q; this leads to the given condition. By (42) we have ν(q) = −bN (uN (q), p),

which rewrites to bN (p, q) if ε = −1. Again by (42) we have for any y ∈ Ker(ν) that

p ⊥ uN (y), so bN (ηN (q), uN (y)) = 0 whence bN (uN (q), uN (y)) = bN (q, uN (y)); since

uN preserves bN it follows that bN (q, y) = bN (q, uN (y)) and hence bN (q, ηN (y)) = 0,

proving the relation. (b) Put η̂ = ηl⊕N ; by definition of j′ we have l1 6⊆ Im(η̂j
′

),

so j = j′ will hold if and only if
(
a
p

)
∈ Ker(η̂m) + Im(η̂). Since l1 ⊆ Im(η̂), this

question can be reduced modulo l1 to p ∈ Ker(ν ◦ ηm−1
N ) + Im(ηN ), which is easily

seen to be equivalent to ν̄(p̄) = 0. Using (42) and the fact that uN acts as 1

on Wc−1(N), it follows from the definitions that Ker(ν̄) = p̄⊥. �

Now, given the construction of M̃ for given ũ, consider flags f ∈ FuN ,T[e]
once

again. We “extend” f to a flag f̂ in M̃ , by defining I(f̂) = I(f) ∪ {|wn|}, and the

parts of f̂ are defined for i ∈ I(f) by

f̂ i =





f i if i > |wn|

f i ⊕ l1 if −wn < i < wn

f i ⊕ l2 if wn < i < −wn

f i ⊕ l1 ⊕ l2 if i < −|wn|

(44)

and for |i| = |wn| by

f̂ |wn| = f |x|, f̂−|wn| = f−|x| ⊕ l1 ⊕ l2. (45)
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In this way it is assured that π(f̂ , l1) = wn and f̂[l1] = f . However, we have not

yet assured that f̂ is ũ-stable; to obtain this it is sufficient to require ũ-stability for

the highest dimensional part not containing l1, and for the lowest dimensional part

containing l2, i.e., for f̂
±wn if wn > 0, or for f̂±x if wn < 0. This gives us the relations

fx ⊆ Ker(ν), p ∈ f−x, and a = 0 if wn < 0, (46a, b, c)

of which the first two are equivalent by (42), since fx is uN -stable.

Now let V be the set of pairs (f, ũ), with f ∈ FuN ,T[e]
and ũ as in (41), satisfying

(42), (43) and (46). Since ũ is effectively specified by the vector
(
a
p

)
, or by p alone

if ε = +1, this is a vector bundle over the irreducible variety FuN ,T[e]
, and therefore

irreducible itself. (It might seem that (43) together with (46c) could give a non-linear

condition on p, but if wn < 0 then also x < 0 so that p is isotropic by (46b), so that

(43) is always satisfied.) Also recall the situation of 4.5.3: a line l ∈ Ue(M) is chosen,

so we have J(l⊥/l) = µ = J(N), which implies l⊥/l ∼= N by 2.2.1.

4.6.4. Lemma. There exist (f, ũ) ∈ V, such that J(ũ) = λ = J(u). For such (f, ũ)

the values of j′ and j of 4.6.3 attain their maximum on V.

Proof. The existence part is based on the observation that for any f̃ ∈ Dl as in 4.5.1

we can decompose M as k ×N × k as in the construction above, in such a way that

for the image f of f̃[l] in N we have f̃ = f̂ . We must take l1 = l of course, and l2
is chosen as follows: if wn > 0 we choose l2 such that l2 ⊆ f̃−wn and l2 6⊆ f̃−x and

that l2 is isotropic (that this last condition may be met can be seen by projecting

onto the non-degenerate space f̃−wn/f̃wn); if wn < 0 we choose l2 such that l2 ⊆ f̃
−x

and l2 6⊆ f̃−wn , which is automatically isotropic. It is easily verified that l2 6⊥ l, so

by choosing appropriate basis vectors v1, v2 in l and l2, and putting N = (l ⊕ l2)
⊥

we obtain a decomposition of M as required, and bM corresponds to b
M̃
. With this

decomposition u has the form (41), and (42) and (43) are satisfied since u preserves

bM . Let f be the image of f̃[l] under the canonical isomorphism l⊥/l
∼
→ N , then

f ∈ FuN ,T[e]
according to 4.5.1, and by the choice of l2 we have f̂ = f̃ . Finally (46) is

immediate since f̃ is u-stable; this completes the existence part.

We have Y (λ) = Y (µ)⊎ supp(e), so the values of j′ and j that 4.6.3 gives for this

situation are κ′e and κe respectively. Now the maximality statement about j′ follows

from 4.6.1(a) and (46a). As j ∈ {j′, j′+1} and we cannot have j = j′+1 if εj′ = +1, the

maximality of j follows directly, unless typ(e) = (I−). In the latter case we may assume

that j′ is maximal, i.e., that j′ = c in 4.6.1. If c = 1 then by a trivial induction it follows

from (39) that wn < 0, so a = 0 by (46c), and the lemma follows by (46a) from 4.6.3(a)

and 4.6.2(a). If c > 1 then by (46a) the lemma follows from 4.6.3(b) and 4.6.2(b). �

It is clear from 4.6.3 that subsets of V given by conditions of the form j ≤ j0∧j
′ ≤

j′0 for fixed j0, j
′
0 are always closed. Therefore 4.6.4 is equivalent to the statement that

J(ũ) = J(u) holds on a dense subset of V.
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4.6.5. Lemma. For (f, ũ) in a dense subset Ṽ of V we have f̂ ∈ Fũ,|T |, where f̂ is

given by (44) and (45).

Proof. Once again we proceed by induction on the definition of φ1. If |wn| = |d|

then we have |T[e]| = |T
↓|, so f ∈ FuN ,|T↓|, and by 4.6.4 we have J(ũ) = λ on a dense

subset of V, and we can take that subset as Ṽ . If |wn| 6= |d| then h = f̂1 lies in N by

(44), so we can form the subquotient N ′ = h⊥/h of N ; by (46a,b) ν and p determine

ν′ ∈ N ′∗ and p′ ∈ N ′ respectively. Now let V ′ be the variety analogous to V for N ′,

then by a construction similar to that of f̂ any element of V ′ determines a flag in

k ×N ′ × k. The flag so determined by (f↓, ũ′) with

ũ′ =




1 ν′ a

0 uN ′ p′

0 0 1


 , (47)

is easily seen to be f̂↓. The map β: { (f, ũ) ∈ V | f ∈ α−1
uN

[h] } → V ′, given by

(f, ũ) 7→ (f↓, ũ′), is surjective, and by induction there is a dense subset Ṽ ′ of V ′

on which f̂↓ ∈ Fũ′,|T↓| holds. We can now take for Ṽ the intersection of β−1[Ṽ ′]

with the dense subset of V on which J(ũ) = λ. �

4.6.6. Theorem. Let the situation be as in 4.5.3. There exists a dense subset D′
[l]

of Fu[l],T[e]
such that for all f ∈ D′

[l] there exist a flag f̃ ∈ D[l] and z ∈ Aut(l⊥/l)◦ such

that f = z · f̃[l].

Proof. We choose a decomposition M ∼= k ×N × k as in the proof of 4.6.4 for some

flag f̌ in D[l], and identify l⊥/l with N ; for D′
[l] we take the image of the projection

Ṽ → Fu[l],T[e]
. Now let any f ∈ D′

[l] be given, we choose a corresponding û such that

f̂ ∈ Fû,|T |. Since in particular J(û) = λ we have by 1.7.1 that u and û are conjugate

in G, say û = gug−1. Since l ∈ Ue(M) and also l ∈ Ue(M̃) we have that l and g−1 · l

are in the same Zu-orbit by 2.3.4, say g−1 · l = h · l with h ∈ Zu. Therefore u and û

are even conjugate by an element gh ∈ Gl. Let C be the conjugacy class in Gl of u,

then (f, ũ) 7→ (f̂ , ũ) defines a continuous map θ: Ṽ → { (f̃ , ũ) ∈ F × C | f̃ ∈ Fũ,|T | }.

Now by 3.2.3 we have that { (z · f̃ , zuz−1) | f̃ ∈ Fu,T ∧ z ∈ (Gl)
◦ } is a connected

component of the latter set. It meets Im(θ) in (f̌ , u), and since Ṽ is connected,

it contains all of Im(θ). In particular it contains (f̂ , û), so there exist f̃ ∈ Fu,T

and ẑ ∈ (Gl)
◦ such that f̂ = ẑ · f̃ and û = ẑuẑ−1. Choosing such f̃ and ẑ, we

have for the automorphism z of l⊥/l induced by ẑ that f = z · f̃[l] and f̃ ∈ D[l],

which proves the theorem. �

Finally we shall show that 4.6.6 is equivalent to 4.5.3. Clearly D′
[l] can be taken

to be the union of all Aut(l⊥/l)◦-orbits in Fu[l],T[e]
that meet D[l], which is the smallest

characteristic subset of Fu[l],T[e]
containing D[l]. This establishes the equivalence.
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4.7. Examples.

Having completed the proof of our main theorem, we shall now give a number of

examples of the kind of computations involved. One may turn back to 3.6 for geometric

descriptions and illustrations of Fu in a number of cases that we shall consider.

First we consider a very simple case: λ = (2, 2) in case D2. Recall that Sλ ={
�

1

�

2 ,
�

1

�

2

}
, which two tableaux parametrise disjoint lines of types s2 and s′2 respec-

tively. We compute φ2
(
�

1

�

2 ,
�

1

�

2

)
which by (40) requires computing φ1

(
�

1

�

2 , e
)
where

e = dom
(
(2, 2), (I−), ‘◦’)

)
, and by (39) this on its turn calls φ0((2, 2), d, e) with

d = e. Case 5 of (38) is selected, giving
(
Λ((2, 2), 1, 2), none

)
, which evaluates to(

cont(d′, d′, none), none
)
where d′ = dom((2, 1), (I+), 2, ‘+’), so this is the outcome of

the application of φ0. Returning to (39) we find that α = cont(d′, d′, none), ω1 = none

and T̃ ↓ =
�

1 ; the second branch of the case-of-expression is taken, and we should

equate (S,wn) to the result of the recursive application φ1
(
�

1 , e′
)
where e′ = d′ as

given above. That application calls φ0, which returns (stop(+1), none)—case 4 ′a—

and now the first branch of the case-of-expression is taken, so φ1
(
�

1 , e′
)
yields (⊙,+1).

Consequently we get S̃ = S = ⊙ and wn = +1 in the original application of φ1, and

this application returns (d′ : ⊙,+1), which equals
(
�

2 ,+1
)
. Back in (40), T[e] is

equated to
�

2 , and the final result is given as φ2
(
�

2 ,
�

1
)
& +1. The remaining appli-

cation of φ2 leads to another instance of case 4 ′a, and yields (+2), so we have finally

computed φ2
(
�

1

�

2 ,
�

1

�

2

)
= (+2)&+1 = (+2,+1). Indeed this is the signed permutation

representing the simple reflection s2, which is the generic relative position of a pair

of flags on a line of type s2. This may seem an overwhelmingly cumbersome way of

computing such an easy result, but with a little practice one gets a feeling for the

general structure of the algorithm, and most of the steps can be performed mentally.

The computation of φ
(
�

1

�

2 ,
�

1

�

2

)
proceeds similarly to the one spelled out above, but

both cases 4 ′a are replaced by 4 ′b, so the result is (−2,−1), which represents s′2.

Next we consider λ = (2, 2) for case C2, wherethe clusters are open and we

have Sλ =
{
�

1
�

2 ,�1
�

2 ,
�

1
�

2
}
. Computing φ2

(
�

1

�

2 ,�1
�

2

)
only involves cases 1 , 2 ′ and

yields (+2,+1), which represents s2. Computing φ2(T, T ) for one of the other two

tableaux involves cases 4 ′a and 5 ′ and yields (−1,+2), which represents s1. That

this result is the same for both tableaux is in agreement with the fact that Au
∼= 2

interchanges the two; however, φ2
(
�

1
�

2 ,
�

1
�

2
)
should yield a different value. Indeed

the first step leads to case 4b instead of 4 ′a, and we then proceed quite differently,

resulting in the value (−2,−1) which represents s1s2s1. We encounter case 6 for the

first time in the computation of φ2
(
�

1
�

2 ,�1
�

2

)
, and similarly φ2

(
�

1

�

2 ,
�

1
�

2
)
involves case 7 .

In the former computation the first application of φ0 yields
(
cont(a, b, none), none

)
,

with a = dom((1, 2), (N), 2, ‘◦’) and b = dom((2, 1), (I−), 2, ‘◦’). Then φ1 recursively

calls φ1
(
�

1 , dom((2, 1), (I−), 2, ‘◦’)
)
and eventually yields (

�

2 ,−1); we finally obtain

the signed permutation (+2,−1), which represents s1s2. The latter computation is

analogous and yields (−2, 1) representing s2s1. Replacing ‘
�

1
�

2 ’ by ‘
�

1
�

2 ’ in these last

two computations changes ω2 in (39) from none to flip(2) during the first call of φ1,
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but since ξ(2,⊙) = ⊙, this does not affect the final result.

A case that is similar, but where ω2 = flip(r) does have an eventual effect is

λ = (3, 3) in case C3. So put T =
�

1

�

2
�

3 , T ′ =
�

1
�

2

�

3 , and T ′′ =
�

1

�

2
�

3 ; these lie

in distinct Aλ-orbits and parametrise the three irreducible components of Bu ⊂ Fu.

In the computations of φ2(T, T ), φ2(T
′, T ′) and φ2(T

′′, T ′′) we do not encounter

any values flip(r), and the results are (+2,+1,+3), (+1,+3,+2), and (−2,−1,+3)

respectively, representing s2, s3 and s′2. We do get ω2 = flip(2) during the evaluation

of applications of φ2 where exactly one of the arguments is T ′′. For instance we

have φ1(T, T
′′
1 ) =

(
�

2

�

3 ,+1
)
where the ‘−’ in the resulting tableau stems from the

application ξ
(
2,
�

2
)
; we finally get φ2(T, T

′′) = (−3,−2,+1) which represents s2s3s
′
2.

In the case of φ2(T
′, T ′′) we similarly get

(
�

1

�

3 ,+2
)
as yield of φ1, and (−3,−1,+2)

representing s2s3 as final result. A table with the complete results for this case can

be found in appendix B.

We have not met cases 3 or 3 ′ yet, and consequently no instances where ω1 6= none

in (39), since this requires λ to have at least three non-zero parts. We do get case 3 ′

when λ = (1, 1, 1) in case B1 but then the application of ξ resulting form ω1 = flip(1)

has no effect. The same is true for the instance of case 3 that we get when λ = (2, 2, 2)

in case C3. The reader is encouraged to perform some computations for this case, and

to verify that none of the signs present in the tableaux affect the outcome; this is as it

should be, because all dominoes appear in cl(0). The simplest case where a non-trivial

value for ω1 does affect the result is when λ = (1, 1, 1, 1) in case D2. This corresponds

to u = e, so for all applicable tableaux T we should have φ2(T, T ) = (−1,−2) which

represents the longest element s2s
′
2 of W . Indeed we have for instance

φ1

(
�

1

�

2 , dom((4, 1), (I+), 2, ‘+’)

)
=

(
�

1 ,−2
)
,

as a consequence of ω1 = flip(2), and this gives the desired answer.

We have illustrated all the essential aspects of the algorithm, and shall now give

a more substantial example, where all these aspects are involved. We show a number

of intermediate stages of the computation, namely the pairs of tableaux that occur

as argument to (recursive) applications of φ2, and the value of wn computed at that

step.

n

T

T ′

wn

8

�

0

�

1
�

2

�

3

�

4

�

5

�

6
�

7
�

8

�

0
�

1

�

2

�

3
�

4

�

5

�

6
�

7

�

8

−1

7

�

0
�

2

�

3

�

4

�

5
�

6
�

7
�

8

�

0
�

1

�

2

�

3
�

4

�

5

�

6
�

7

+2

6

�

0
�

3

�

4

�

5
�

6
�

7
�

8

�

0
�

1

�

2

�

3
�

4

�

5

�

6

−5

5

�

0
�

3

�

4

�

6
�

7
�

8

�

0
�

1

�

2

�

3
�

4

�

5

−6

4

�

0
�

3

�

4

�

7
�

8

�

0
�

1

�

2

�

3
�

4

+3

3

�

0
�

4

�

7

�

8

�

0
�

1

�

2

�

3

−7

2

�

0
�

4

�

8

�

0
�

1

�

2

−8

1

�

0
�

4

�

0
�

1

+4
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4.8 Conclusion

We do not comment on the details; these may be checked by the reader. Note in

particular that during the third step the sign of the domino numbered 4 in T changes

twice.

4.8. Conclusion.

We have derived an algorithm φ2, defined by (33)–(40), that computes the generic

relative positions of irreducible components of either Fu or Bu for classical groups G

of types Bn, Cn and Dn in any characteristic other than 2, and any u ∈ G. The

parametrisation that is used is defined in §3. The basic combinatorial properties of

the correspondence so defined are stated in 4.5.5. The algorithm is analogous to

the Robinson-Schensted algorithm—which performs these computations for groups of

type An—but it is rather more complicated; nevertheless it can be performed (with

some effort) by hand, and very efficiently by an electronic computer (see appendix C).

The possibility to calculate generic relative positions can be useful in the geometric

study of the varieties Bu. The algorithm also raises new questions as to its further

combinatorial properties (see appendix A).

We have not treated the characteristic 2 case, but it seems that a similar approach

might work for that case, using the parametrisation given in [Spa II.6], and that this

would result in a analogous, but probably more complicated, algorithm. On the other

hand the exceptional groups would present more fundamental difficulties, since we lack

systematic parametrisations of Irr(Bu), as well as explicit permutation representations

of the Weyl groups of the kind employed by our method.
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Appendix A. Some related algorithms

Appendix A. Some related algorithms.

In this appendix we present two algorithms that are related to φ2, the main algorithm

of this thesis. The first one is the Robinson-Schensted algorithm mentioned in the title.

The second is an algorithm due to D. Garfinkle, that bears a striking resemblance to

our algorithm (we learned about her work by private communication, and know no

published account of it to date). It involves the same Weyl groups of types Bn, Cn

and Dn, and plays a rôle in the determination of their Kazhdan-Lusztig cells.

The Robinson-Schensted algorithm is a combinatorial procedure that establishes

a bijective correspondence between the symmetric group Sn and the set of all ordered

pairs of Young tableaux of equal shape with entries 1, . . . , n. It has many useful

interpretations, of which the fact that it describes for groups of type An the generic

relative positions of irreducible components of Bu, is only a comparatively recent one.

Since our algorithm was strongly inspired by it, it seems appropriate that we should

reproduce it here for comparison, in a form that resembles the way our algorithm

is formulated. Now the Robinson-Schensted algorithm is usually presented in a way

rather different from our the description of φ2, but it is not difficult to transform it in

such a way that the resemblance becomes apparent.

A Young tableau is a numbering of the squares of a Young diagram with dis-

tinct numbers, such that they are increasing along rows and columns. Formulated

differently, it is a numbering such that, if the diagram is non-empty, there is a unique

highest numbered square, and omitting it gives another Young tableau. The Robinson-

Schensted algorithm constructs a pair of Young tableaux with the same shape and both

with entries 1, . . . , n, from a permutation of those numbers, i.e., from a sequence of

those numbers in permuted order. One starts with a pair of empty tableaux—one on

the left and one on the right—and then successively ‘inserts’ the numbers from the

sequence into the left tableau, meanwhile adding the number i to the right tableau

after the ith insertion. In the usual formulation, a number is inserted according to the

following rule: the number is placed in the first row of the tableau, where it replaces

the first larger number present if there are any. Then that number is moved to the

second row, again replacing the next larger number, and so on, until a number is

moved to a row containing only smaller numbers; it is then simply appended to the

end of that row. Hereby the insertion is completed, and the number added to the

right tableau is placed in the same position as the number that was moved last in the

left tableau, so that both tableaux have the same shape after each major step of the

algorithm. It is not immediately clear that the columns of the left tableau will always

be increasing, but this can be proved by a simple induction; moreover this property

will be quite obvious from the alternative—recursive—formulation that we shall now

give.

That formulation is based on observation of the part that the highest number of

the left tableau plays in the insertion process. If it is moved at all, this happens at

the last step of the insertion, and the move doesn’t affect the position of any other
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Appendix A. Some related algorithms

number. So if we remove the highest number from the left tableau after an insertion,

and assuming that it is not the inserted number, then the result will be the same

as when we had removed the number before the insertion. We can now easily derive

the following description of the insertion process. If the number to be inserted is

higher than any one present in the tableau, simply add it to the first row. Otherwise

remove the highest number from the tableau, remembering its position, and recur-

sively perform insertion of the same number into the smaller tableau. Then add the

highest number again in its old place if that square has not been occupied by the

insertion, but if it has been occupied, add the highest number at the end of the next

row. One readily checks that in all cases the numbers will fill a Young diagram after

the insertion; in the case that the highest number is moved this follows because the

row it is moved to is at least one shorter then the row above it, since a new square

has just been occupied in the latter. This description, although not to be recom-

mended when performing the calculations by hand, is quite useful in mathematical

considerations.

We can express this definition using the formalism introduced in 4.5. Young

tableaux are represented as a sequence of ‘squares’, where each square s has a position

π(s) and an entry |s|; the squares are ordered by decreasing entries. A position is just

a pair (r, c) of a row and column number, while a square with position (r, c) and

entry x may be specified as sq((r, c), x). The shape of a Young tableau T is written

as sh(T ), and is a partition whose parts are the lengths of the rows of T ; also let

|T | denote the highest entry of a square in T , or 0 if T is empty. The insertion step

may now be specified as a function R1, taking as arguments a Young tableau and a

number, and returning a pair of a modified tableau, and the position that is occupied

by that tableau but not by the original one.

R1(T, x) = let λ = sh(T ) in

if x > |T | then let p = (1, λ1 + 1) in
(
sq(p, x) : T, p

)

else let (s : T ↓) = T ; (T ′, p) = R1(T
↓, x) in

if π(s) 6= p then (s : T ′, p)

else let (r, c) = p; p′ = (r + 1, λr+1 + 1) in
(
sq(p′, |s|) : T ′, p′

)

fi

fi

(48)

It is now easy to express the complete algorithm, called R2.

R2(w) = if w = ⊙ then (⊙,⊙)

else let (w′ & x) = w; (P,Q) = R2(w
′); (T, p) = R1(P, x)

in
(
T, sq(p, |Q|+ 1) : Q

)

fi

(49)

Note that the definition of R1 could have been considerably simpler if we would have

defined squares to contain only a row number and an entry; this would still allow the
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determination of the column numbers in the context of a Young tableau. For a proper

comparison with φ2 we should also give the inverse Robinson-Schensted algorithm. It

is similar to the ordinary one, and we specify it by two functions R′
1 and R′

2.

R′
1(s : T, p) = if π(s) 6= p then let (T ′, x) = R′

1(T, p) in (s : T ′, x)

else let λ = sh(T ); (r, c) = p in

if r = 1 then (T, |s|)

else let p′ = (r − 1, λr−1); (T ′, x) = R′
1(T, p

′)

in (sq(p′, |s|) : T ′, x)

fi

fi

(50)

R′
2(P,Q) = if Q = ⊙ then ⊙

else let (q : Q↓) = Q; (P ′, x) = R′
1(P, π(q)) in R′

2(P
′, Q↓) & x

fi

(51)

Comparing these definitions to (33)–(40) we see that the algorithm of this thesis has

indeed a similar structure to the (inverse) Robinson-Schensted algorithm, but it has so

many more cases that it was practical to split off a number of auxiliary functions, and

to encode their results as tagged values. There is even a (slight) formal connection

between the algorithms φ2 and R
′
2: if in case Cn a pair T, T ′ of signed domino tableaux

has dominoes of type (N) only, then φ2(T, T
′) contains only positive numbers, and

can therefore be interpreted as a permutation of n, and this permutation can also

be computed as R′
2(T̃ , T̃

′) for Young tableaux T̃ , T̃ ′ obtained by “compressing” T, T ′

horizontally in the obvious way. This is because in the evaluation of φ2(T, T
′) only

cases 1 ,2 and 2 ′ occur, and their effect is precisely mirrored by (50).

We now turn to the other algorithm. That one resembles our algorithm in a

much more detailed way, but it doesn’t involve the subtleties associated with signs in

tableaux. Indeed it may justly be considered as the combinatorial archetype of our

algorithm. It deals with dominoes and signed permutations like our algorithm, but

here the dominoes carry no signs, nor is there a restriction on the position of their

support: any two adjacent squares may form the support of a domino. Therefore

we need to consider only two types of dominoes: horizontal (H) and vertical (V)

ones. Such a domino is determined by its position (i.e., that of its lower righthand

square), type and entry; to distinguish them from our other dominoes we write d =

dom′(π(d), typ(d), |d|). Domino tableaux formed from these dominoes are defined by

exact analogy to the definitions in 3.3; a fixed value for supp(⊙) is chosen, which

can be ∅ (cases Cn and Dn) or {(1, 1)} (case Bn). There is however an interesting

generalisation, that was suggested by I. G. Macdonald: we might also fix supp(⊙)

to the set Y (λ) for any of the “staircase” partitions λ = (n, n − 1, . . . , 2, 1), which

are precisely the partitions at whose periphery no domino (in the current sense) can

lie. The definition of the algorithm, that we shall call Γ2, is identical in all cases; we

present it in a form that maximally emphasises the similarity with (36)–(40).
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Υ′(λ, i, x) = if i = 0 then stop(+x)

else let j = λi; d
′ = dom′

(
(i, j), (H), x

)
in cont(d′, d′)

fi

(52)

Λ′(λ, j, x) = if j = 0 then stop(−x)

else let i = tλj ; d
′ = dom′

(
(i, j), (V), x

)
in cont

(
d′, d′)

fi

(53)

Γ0(λ, d, e) = if π(d) 6= π(e) then cont(d, e)

else let (r, c) = π(d) in

case typ(d) = typ(e) = (H):Υ(λ, r − 1, |d|)

, typ(d) = typ(e) = (V): Λ(λ, c− 1, |d|)

, {typ(d), typ(e)} = {(V), (H)}:

let a = dom′
(
(r − 1, c), (H),|d|

)

; b = dom′
(
(r, c− 1), (V),|d|

)
in

if typ(d) = (V) then cont(a, b) else cont(b, a) fi

esac

fi

(54)

Γ1(T, e) = let λ = sh(T ); (d : T ↓) = T in

case Γ0(λ, d, e) of stop(wn): (T
↓, wn)

, cont(d′, e′): let (S,wn) = Γ1(T
↓, e′) in (d′ : S,wn)

esac

(55)

Γ2(T, T
′) = if T = ⊙ then ⊙

else let (e : T ′↓) = T ′; (T[e], wn) = Γ1(T, e) in Γ2(T[e], T
′↓) & wn

fi

(56)

For Γ2 we have more pleasing combinatorial properties than for φ2: it defines

a bijection from the set of pairs of domino tableaux of the same shape to Hn; no

equivalence classes or group actions are involved as in 4.5.5. In fact inverses of both

Γ1 and Γ2 can be defined in a straightforward way. This is unlike φ2 which has only

a right-inverse while φ1 has no inverse at all in the strict sense; see appendix C for

details on this matter.

Despite these differences, φ2 and Γ2 seem to be very closely related, closer even

than would follow from the similarity of their definitions. One would expect that the

small differences in their definitions could lead to a major divergence as the algorithm

proceeds, but if we compare a pair of signed domino tableaux that is mapped by φ2
to a particular w ∈ Hn with the pair of domino tableaux that are mapped to w by Γ2,

then we generally find that they are quite similar. Experimental evidence suggests

that, ignoring signs in the tableaux, the differences are limited to chains of dominoes

that are “cycled around” by one square (i.e., half a domino), and that these chains lie

within a single cluster, the chain being open or closed as the cluster is. As an example

here are two such pairs and their succesive modifications at each major step of the

algorithm; the tableaux at the left correspond to case Dn. The differences remain
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present up to the last step, but both pairs correspond to the same signed permutation

(+2,+6,+3,+5,−4,+1,−7).

φ2 n wn Γ2

�

1

�

2
�

3

�

4

�

5

�

6

�

7

�

1
�

2

�

3
�

4

�

5
�

6

�

7

7 − 7 �

1

�

2
�

3

�

4

�

5

�

6

�

7

�

1
�

2

�

3
�

4

�

5
�

6

�

7

�

1

�

2
�

3

�

4

�

5

�

6
�

1
�

2

�

3
�

4

�

5
�

6

6 + 1 �

1

�

2
�

3

�

4

�

5

�

6

�

1
�

2

�

3
�

4

�

5
�

6

�

2
�

3

�

4

�

5

�

6
�

1
�

2

�

3
�

4

�

5

5 − 4 �

2
�

3

�

4

�

5

�

6

�

1
�

2

�

3
�

4

�

5

�

2
�

3
�

5

�

6
�

1
�

2

�

3
�

4 4 + 5 �

2
�

3
�

5

�

6
�

1
�

2

�

3
�

4

�

2
�

3

�

6
�

1
�

2

�

3
3 + 3 �

2
�

3

�

6
�

1
�

2

�

3

�

2
�

6

�

1
�

2 2 + 6 �

2
�

6
�

1
�

2

�

2

�

1 1 + 2 �

2
�

1

Incidentally, the computation of φ2 in case Cn that leads to the same signed permu-

tation is almost identical to the one shown on the right ; only a single ‘−’-sign has to

be added in the third line. It is clear that some interesting conjectures may be made

about the relationship between φ2 and Γ2, but they will have to be made very precise

before they can be proved.

Appendix B. Tabulated results.

We tabulate the values computed by φ2 in all cases with n = 2 and with n = 3. The

first argument of φ2 appears along the left border of the tables, the second argument

along the top border; only a single representative of each equivalence class of tableaux

is listed. In the cases Dn we only tabulate pairs of tableaux corresponding to the

same connected component of Fu (i.e., with the same product of signs), and if these

components are interchanged by the action ofAu only those corresponding to one of the

components. Instead of 1 × 1 tables we simply give a tableau and the corresponding

signed permutation. For sake of compactness we omit the parentheses from signed

permutations, and write the minus-signs above the number they apply to while plus-

signs are omitted. We give the cases in the order of increasing complexity, namely D2,

C2, B2, D3, C3, B3.
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D2:
�

1
�

2 : 1, 2
�

1

�

2 : 2, 1
�

1

�

2 : 2, 1 �

1

�

2 : 1, 2

C2: �

1
�

2 : 1, 2

�

1
�

2
�

1

�

2
�

1
�

2

�

1
�

2 1, 2 2, 1 2, 1

�

1

�

2 2, 1 2, 1 2, 1

�

1
�

2 2, 1 2, 1 1, 2

�

1

�

2 : 1, 2 �

1

�

2
: 1, 2

B2: �

0
�

1
�

2 : 1, 2

�

0
�

1

�

2
�

0

�

1
�

2
�

0
�

1

�

2

�

0
�

1

�

2 2, 1 2, 1 1, 2

�

0

�

1
�

2

2, 1 1, 2 2, 1

�

0
�

1

�

2 1, 2 2, 1 2, 1

�

0

�

1
�

2 : 2, 1
�

0

�

1

�

2
: 1, 2

D3:
�

1
�

2
�

3 : 1, 2, 3

�

1

�

2

�

3

�

1
�

2

�

3

�

1

�

2

�

3

1, 2, 3 1, 3, 2

�

1
�

2

�

3 1, 3, 2 1, 2, 3

�

1

�

2

�

3
�

1

�

2

�

3
�

1

�

2
�

3

�

1

�

2

�

3 3, 2, 1 2, 1, 3 2, 3, 1

�

1

�

2

�

3 2, 1, 3 3, 2, 1 2, 3, 1

�

1

�

2
�

3

3, 1, 2 3, 1, 2 1, 3, 2

�

1

�

2
�

3

�

1
�

2

�

3
�

1

�

2
�

3

�

1

�

2
�

3 2, 1, 3 2, 3, 1 3, 2, 1

�

1
�

2

�

3 3, 1, 2 1, 3, 2 3, 1, 2

�

1

�

2
�

3 3, 2, 1 2, 3, 1 2, 1, 3

�

1

�

2

�

3

: 1, 2, 3

C3: �

1
�

2
�

3 : 1, 2, 3
�

1

�

2

�

3

: 1, 2, 3

�

1
�

2
�

3
�

1

�

2
�

3
�

1
�

2

�

3
�

1
�

2
�

3

�

1
�

2
�

3 1, 2, 3 2, 1, 3 2, 3, 1 2, 1, 3

�

1

�

2
�

3 2, 1, 3 2, 1, 3 2, 3, 1 2, 1, 3

�

1
�

2

�
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Appendix C. Computer program.

ALGOL 68 is a language in which algorithms may be formulated for computers,

i.e., for automata and for human beings.

A. van Wijngaarden et al., [Wijn 1.1.1.a]

We present a computer program with routines that perform the main algorithm φ2 of

this thesis, and a right-inverse of φ2. In contrast to the formalism used to define φ2,

the program is written in a “real” programming language, Algol 68, that is particularly

suited for this form of communicating algorithms. This language was chosen despite its

nowadays limited availability, because—contrary to its competitors—it is well defined

(see [Wijn]), succinct and elegant.

The program is listed at the end of this appendix; here we give comments that may

help to understand the way its works. A number of transformations have been made

to the definition of φ2, eliminating the auxiliary functions φ0 and φ1, and resulting in

an iterative rather than recursive algorithm. First, we note that in (39) the domino

e′ never has sg(e′) = ‘−’ unless e′ = e. Therefore, if the domino e that is a argument

to the initial call of φ1 has sg(e) 6= ‘−’, then so will all the corresponding dominoes
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in recursive calls; moreover, this initial condition can always be satisfied by applying

the diagonal action of some gi ∈ Aλ to the pair of tableaux if necessary. When this

has been done, conditions as sg(d) = sg(e) can be rewritten as sg(d) = ‘+’, and more

importantly, case 7 never causes ω2 = flip(r) in (39). If follows that ω2 = flip(r),

which can be caused only by cases 3 , 4b or 6 , implies typ(e′) = (I−) and ρe′ = r, and

its effect can be predicted as follows.

In the subsequent calls of φ0, possibly after a number of instances of case 0 whose

dominoes d do not meet row r, we encouter case 5 or 5 ′ with e equal to e′ above. If it

is case 5 ′ then row r will be empty in the modified tableau returned by this innermost

call of φ1, and this will remain true when returning from the intermediate calls of φ1
(with case 0 ); therefore ξr will be applied to a tableau whose row r is empty, and have

no effect. If we have case 5 , then a modified tableau is constructed whose leading

domino d′ has typ(d′) = (I+), sg(d′) = ‘+’ and κd′ = κe − 1. As in the previous

case no dominoes intervene in row r, so ξr will effectively be applied to this modified

tableau, and we see that this affects the sign of the cluster cl(d′) (although possibly

not of d′ itself), and an equivalent effect can be achieved by putting sg(d′) = ‘−’

instead of sg(d′) = ‘+’. Therefore if we record the fact that an application of ξr is

‘pending’, it can be executed during the next instance of case 5 (or simply forgotten

in case 5 ′); note that case 5 can also occur after cases 2 and 4a, in which case we

should put sg(d′) = ‘+’ as in the original formulation.

In this way each domino of the modified tableau can get its eventual value right

away, and need not be reconsidered until the next major step of φ2. The fact that new

dominoes are computed while we are still taking apart the original tableau is no real

problem: they can be simply put aside and be incorporated in the tableau at the ap-

propriate time. In this way we have effectively transformed the recursion to iteration.

We now discuss the actual program. First come some variables that determine

the considered case, and some mode declarations. A fairly straightforward represen-

tation of dominoes and signed permutations is chosen, but note that dominoes don’t

contain entries; these are implied by the context when relevant. In order to achieve

this, tableaux are represented as linear arrays of dominoes, the selecting index being

the entry of the domino. Since the sequence of entries present at any moment need

not be consecutive, a union is in fact taken with the singleton mode void, whose sole

value empty indicates that the entry in question is absent (other encodings may be

proposed, but this is the most natural one). This will necessitate conformity (case)

clauses with a single unit—for the mode domino—in several places. For efficiency

reasons tableaux also contain two partitions, giving their shape and transpose shape,

which are incrementally updated.

Putting aside dominoes and re-incorporating them is done just by modifying the

shape, leaving the dominoes themselves in place. The first few routines are rather

trivial, dealing mainly with shapes; they are followed by the routines xi , . . . , phi2

that implement ξ, . . . , φ2, where the three functions φ are merged together to phi2.

72



Appendix C. Computer program

Whether an application of ξ is pending is recorded in saved sign, that is also trans-

ferred to up and left ; it is set whenever we assign ‘tp of e := Imin’, and it is used

by left in the case corresponding to 5 . The abbreviated form ‘( | | )’ of conditional

clauses is occasionally used. For clarity we have given ‘sg of e’ its proper value in all

cases, but it is never used; therefore some optimisations can still be made.

After phi2 we proceed to its right-inverse, psi2. The largest part of its definition

is guided by simply “tracing back the history of phi2”, but there is a difficulty since

φ1 is not strictly invertible: pairs like
(
�

2 ,−1
)
or

(
�

2 ,+1
)
are never yielded, although(

�

2

�

3 ,−1
)
is. The solution is to apply the diagonal action of a suitable gi ∈ Aλ on the

pair of tableaux when necessary, to eliminate the problematic left tableau. It can how-

ever not easily be predicted beforehand whether this is necessary, or which gi should

be used, so we reason as follows, on the basis of the algorithm phi2. Each time we en-

counter a domino of type (I+) in the left tableau (except in case 0 ) we initially assume

that its sign is due to saved sign, and record it. We then continue the trace back with a

domino of type (I−) as candidate for e ′, and one of the following situations may arise.

If we next meet a domino of type (N), then we have case 6 , and the recorded sign

is inserted in the new domino d of type (I+) in the left tableau. If the recorded sign is

‘−’, and we meet a domino of type (I−) with the same support as e ′, then this must

have been case 3 , accounting for the recorded sign, and we proceed correspondingly. If

we meet a domino of type (I−) when the recorded sign is ‘+’, then we assume that this

is case 2 or 4a if such is possible, i.e., if the next row is sufficiently short (this is similar

to the distinction between cases 3 and 4a). If this is the case, then we can proceed

without difficulty. If however the next row is too long to allow cases 2 or 4a, then

it can only have been case 3 , so our assumption about saved sign has to be revised.

Fortunately it can be verified that the domino whose sign was recorded cannot have

been the only one in its cluster in this case, so the situation can be remedied by a

redistribution of signs. Although this redistribution should conceptually be performed

in the left tableau before our back-tracing modification, it can be derived from 4.5.5

that in this case applying ξr+1 commutes, up to equivalence, with the modification of

the tableau, so there is no need to start anew with tracing back phi2.

Finally there is the possibility that none of the above cases occurs, i.e., that pos-

sibly after a sequence of cases 0 we have traced back to point corresponding to the

initial call of φ1. If in this case the recorded sign is ‘+’—the value to which saved sign

is initialised in phi2—there is no difficulty and a domino (of type (I−)) can simply

be added to the right tableau. If the recorded sign is ‘−’, we are in the case where

φ1 cannot be strictly inverted, and the diagonal action of gr ∈ Aλ has to be invoked,

where r is the row of the domino to be added on the right. Conceptually this should

be done before the back-tracing process, so its effect on the left tableau may be taken

to be the correcting of the “wrong” sign recorded, and no explicit action should be

taken; on the right tableau we apply ξr before adding the domino.

And now finally: here is the program itself.
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begin loc int n, case # These define the case considered #

, int Bn = 2,Cn = 3,Dn = 4

, proc eps = (int j ) bool: odd(j + case) # whether or not εj = +1 #

, mode type = int, type Non = 1, Iplus = 2, Imin = 3

, mode sign = int # , sign plus = +1,minus = −1, absent = 0 #

, domino = struct(int row , col , type tp, sign sg)

, partition = [2 ∗ n + abs(case = Bn)] int

, tableau = struct([n] union(domino,void) dom, partition sh, tr)

, signperm = [n] int

, op lc = (domino d) int: col of d − abs(tp of d = Non) # left column #

, proc clear = (ref partition p) void:

begin for i to upb p do p[i ] := 0 od; if case = Bn then p[1] := 1 fi end

, proc extend = (ref tableau T , domino d) void: # extend shape of T #

begin int r = row of d , c = col of d , ref partition sh = sh of T , tr = tr of T

; sh[r ] := c; tr [c] := r ; if tp of d = Non then tr [c−1] := r else sh[r −1] := c fi

end

, proc set shape = (ref tableau T ) void:

begin clear(sh of T ); clear(tr of T )

; for i to n do case (dom of T )[i ] in (domino d): extend(T , d) esac od

end

, op ↓ = (ref tableau T , int x ) void: # inverse of extend(T , (dom of T )[x]) #

case (dom of T )[x ] in (domino d):

if int r = row of d , c = col of d , ref partition sh = sh of T , tr = tr of T

; tp of d = Non then sh[r ]−:= 2; tr [c − 1 ]−:= 1; tr [c ]−:= 1

else tr [c ]−:= 2; sh[r − 1]−:= 1; sh[r ]−:= 1

fi

esac

, proc xi = (int r , ref tableau T , int last) void: # T [≤ last ] := ξr(T [≤ last ]) #

begin loc bool busy := true, loc domino dd

; for x from last to 1 while busy do case (dom of T )[x ] in (domino d):

if tp of d = Iplus and (r = row of d − 1 or r = row of d)

then dd := d ; sg of dd := −sg of d ; (dom of T )[x ] := dd ; busy := false

fi

esac od

end

, proc up =

(ref tableau T , int i , ref domino e, ref sign sg) union(sign,domino):

if i = 0 then +1 # sign for in permutation #

else int j = (sh of T )[i ]; e :=
(
i , j , (eps(j ) | Non | sg := +1; Imin), 0

)

fi
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, proc left =

(ref tableau T , int j , ref domino e, ref sign sg) union(sign,domino):

if j = 0 then −1 # sign for in permutation #

elif int i = (tr of T )[j ]; eps(j ) then e := (i , j , Iplus ,+1); domino(i , j , Iplus , sg)

else sg := −1; e := (i , j , Imin, 0)

fi

, [ , ] int branch table 1 =
(
(1, 5, 0), (4, 2, 0), (0, 0, 3)

)

, proc phi2 = (ref tableau T ,Tprime) signperm:

begin n := upb dom of T ; loc signperm w ; set shape(Tprime)

; for y from n to 1 do case (dom of Tprime)[y ] in (domino e0):

begin sh of T := sh of Tprime; tr of T := tr of Tprime; Tprime ↓ y

; loc domino e := e0, loc sign saved sign := +1, loc bool busy := true

;
(
tp of e = Iplus and sg of e = −1

∣∣ xi(row of e,T ,n); sg of e := +1
)

; for x from n to 1 while busy do case (dom of T )[x ] in (domino d):

begin int r = row of d , c = col of d ; T ↓ x

; if c = col of e then case union(sign,domino) # cast next clause: #

case branch table 1[tp of d , tp of e]

in # (N),(N) # up(T , r − 1, e, saved sign)

, # (I+), (I+) # if r − (tr of T )[c + 1] = 2 and sg of d = +1

then up(T , r − 2, e, saved sign)

else
(
sg of d = +1

∣∣ xi(r − 2,T , x − 1)
)

; left(T , c − 1, e, saved sign)

fi

, # (I−), (I−) # left(T , c − 1, e, saved sign)

, # (I+), (N) #
(
saved sign := sg of d

; e := (r , c − 1, Imin, 0); domino(r − 1, c,Non, 0)
)

, # (N), (I+) #
(
e := (r − 1, c,Non, 0); domino(r , c − 1, Imin, 0)

)

esac

in (sign s):
(
w [y ] := s ∗ x ; (dom of T )[x ] := empty; busy := false

)

, (domino dd): (dom of T )[x ] := dd

esac fi

end esac od

end esac od; w

end

, proc down = (ref tableau T , int i , ref domino e) domino:

e :=
(
int j = (sh of T )[i ]; eps(j )

∣∣ (i , j + 2,Non, 0)
∣∣ (i + 1, j + 1, Iplus ,+1)

)

, proc right = (ref tableau T , int j , ref domino e) domino:

if int i = (tr of T )[j ]; eps(j )

then e := (i + 2, j , Iplus ,+1); (i + 2, j , Iplus ,−1) else e := (i + 2, j , Imin, 0)

fi
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, [ , ] int branch table 2 =
(
(1, 0, 4), (0, 3, 0), (5, 0, 2)

)

, proc psi2 = (signperm w) struct(tableau left , right):

begin n := upb w ; loc tableau T ,Tprime

; for i to n do (dom of T )[i ] := empty od; clear(sh of T ); clear(tr of T )

; for y to n

do int x0 = absw [y ]; for x from n by −1 to x0 + 1 do T ↓ x od

; loc domino e; (dom of T )[x0] :=
(
w [y ] > 0

∣∣ down
∣∣ right

)
(T , 1, e)

; loc sign saved sign := −1

; for x from x0 + 1 to n do case (dom of T )[x ] in (domino d):

begin int r = row of d , c = col of d ; extend(T , d)

; if lc d = lc e then (dom of T )[x ] := domino # body of cast follows: #

case branch table 2[tp of d , tp of e]

in # (N), (N) # down(T , r + 1, e)

, # (I−), (I−) # if (sh of T )[r + 1] < c − 1 and saved sign = +1

then down(T , r + 1, e)

else
(
saved sign = +1

∣∣ xi(r + 1,T , x − 1)
)

; right(T , c + 1, e)

fi

, # (I+), (I+) #
(
saved sign := sg of d ; right(T , c + 1, e)

)

, # (N), (I−) #
(
e := (r , c + 1,Non, 0); (r , c + 1, Iplus , saved sign)

)

, # (I−), (N) #
(
e := (r + 1, c − 1, Iplus ,+1); (r + 1, c,Non, 0)

)

esac

fi

end esac od

;
(
tp of e = Imin and saved sign = −1

∣∣ xi(row of e,Tprime, x − 1)
)

; (dom of Tprime)[x ] := e

od

; sh of Tprime := sh of T ; tr of Tprime := tr of T ; (T ,Tprime)

end

# Example of use #

; for c from Bn to Dn

do n := 7; case := c

; loc struct(tableau left , right)pair := psi2
(
(4,−3, 7,−2,−1,−5, 6)

)

; print
(
(phi2(left of pair , right of pair),newline)

)

od

end

“Begin at the beginning,” the King said, gravely,

“and go on till you come to the end:

then stop.”

Lewis Carroll, Alice in Wonderland
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List of symbols

List of symbols.

We list the symbols that either have a fixed meaning, or denote a variable object

that assumes a fixed value throughout a significant part of this thesis. In some cases,

such as bj,N , part of the symbol is in fact variable; notations such as T ↓ where the

alphabetic part is variable are listed at the end.
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Õ(w) . . 4

p . . . . 56

P(V ) . . 2

Qu . . . 15

r, r′ . . 40

si . . . . 5

s̃i . . . . 5

s′2 . . . . 5

Su . . . . 6

Su,t . . 17

Sλ . . . 20

Sλ,t . . 20

sg . . 2,18

sg(d′) . 47

sg(e′) . 45

sh(T ) . 18

stop . . 50

supp . . 18

T, T ′ . . 40

Tλ . . . 19

typ . 10,18
tλ . . . . 2

u . . . . . 5

u[L] . . . 8

Ud(N) . 18

Uj(N) . 9

U I
j (N) . 10

UN
j (N) 10

uN . . . 8

Vj(N) . . 9

V . . . . 58
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Samenvatting

Samenvatting.

We beschouwen klassieke algebräısche groepen, dat wil zeggen groepen bestaande uit

symmetrieën van een vectorruimte, die in het door ons beschouwde geval een gegeven

bilineaire vorm (inprodukt) behouden. In de betreffende vectorruimte beschouwen

we vlaggen: ketens van een lijn, vlak, 3-dimensionale deelruimte enzovoort, die elk

hun voorganger bevatten (en de lijn bevat de oorsprong). Twee vlaggen hebben een

onderlinge ligging, welke bepaald is door vergelijking van delen van de ene vlag met

ieder van de delen van de andere, waarbij slechts gekeken wordt naar de dimensie

van de doorsnede van de delen, en bij aanwezigheid van een bilineaire vorm naar

loodrechtheid. Er zijn slechts eindig veel mogelijkheden voor de onderlinge ligging; de

verzameling hiervan vormt de Weyl-groep.

Voor een vast element u uit de groep, waarvoor we een unipotent zullen nemen,

noemen we Fu de deelverzameling van die vlaggen die door u in zichzelf worden

overgevoerd. Omdat een unipotent iedere vector slechts in een andere dan diens eigen

richting kan bewegen, betekent dit dat de vectoren op de lijn uit de vlag op hun plaats

blijven, die uit het vlak slechts evenwijdig aan de lijn kunnen bewegen, die uit de

3-dimensionale deelruimte slechts evenwijdig aan het vlak, enzovoorts. Nu blijkt Fu

vaak uit een aantal irreducibele komponenten te bestaan, stukken die elkaar nog in

een lager dimensionaal stuk kunnen snijden. Neem bijvoorbeeld (de bilineaire vorm

even achterwege latend) voor u de unipotente transformatie van een 3-dimensionale

vectorruimte die iedere vector in de z-richting verschuift over een afstand gelijk aan zijn

x-coördinaat. Vlaggen—in dit geval bestaande uit een lijn en een vlak—die invariant

zijn onder u moeten ofwel als lijn de z-as hebben (alle verschuivingen zijn hieraan

evenwijdig), ofwel als vlak het y-z-vlak (deze vectoren worden niet verplaatst); er is

één vlag die aan beide kondities tegelijk voldoet.

De vraag die in dit proefschrift beschouwd wordt, is die naar de generieke

onderlinge ligging van een paar irreducibele komponenten van Fu. Dat wil zeggen de

onderlinge ligging van vlaggen uit de gegeven komponenten waarvoor geen toevallige

incidenties plaatsvinden. Omdat samenvallen van twee vlaggen zeker een toevallige

incidentie is—tenzij de gegeven komponenten uit slechts één vlag bestaan—is deze

informatie ook interessant als we tweemaal dezelfde komponent kiezen. In het gegeven

voorbeeld is de generieke onderlinge ligging van de eerstgenoemde komponent met

zichzelf zodanig dat de lijnen samenvallen (beide de z-as) en derhalve ook in het vlak

van de andere vlag liggen, maar de vlakken niet samenvallen; de generieke onderling

ligging van de eerstgenoemde komponent met de tweede is zo dat de lijn van de eerste

vlag in het vlak van de tweede vlag ligt maar niet andersom, en lijnen noch vlakken

samenvallen.

Om de gestelde vraag konkreet te kunnen beantwoorden is het nodig dat we

over parametriseringen, dat wil zeggen systematische benamingen, beschikken voor

de irreducibele componenten van Fu, en van de Weyl-groep. In het geval van een

groep van zogenaamd type An (waarbij er geen bilineaire vorm in het spel is),
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gebeurt de eerste parametrisering met behulp van ‘Young tableaux’, en de tweede met

permutaties; de gestelde vraag wordt dan beantwoord door het Robinson-Schensted

algoritme, dat paren Young tableaux koppelt aan permutaties, en welk algoritme al

veel eerder bekend was dan dat de genoemde vraag bestudeerd is.

Voor de groepen van typen Bn, Cn enDn die in dit proefschrift centraal staan is de

parametrisering van de Weyl-groep nog redelijk eenvoudig (permutaties met tekens),

maar die van de irreducibele komponenten van Fu heeft veel voeten in de aarde:

onze hele §3 is eraan gewijd, en dit vereist ook nog een zorgvuldige analyse in §2

van de lineaire algebra van de vectorruimte met de gekozen unipotente transformatie.

Het resulteert erin dat de komponenten kunnen worden benoemd door middel van

‘domino-tableaux met tekens’: kleine diagrammen met domino-vormige vakjes met

daarin gehele getallen en soms ook tekens, zoals men ze in groten getale kunt aantreffen

in 3.6 en appendix B. In §4 gebeurt het eigenlijke werk: er wordt een algoritme afgeleid

dat bij paren van dergelijke domino-tableaux de permutaties met tekens berekent die

de betreffende generieke onderlinge ligging beschrijft. Het algoritme is analoog aan,

maar veel gekompliceerder dan, het Robinson-Schensted algoritme. In appendix C

wordt een computer programma gegeven dat deze berekening, en ook een omkering

ervan, kan uitvoeren.
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Preface.

This thesis is devoted to a single problem, that is expressed most succinctly in the

quotation heading 1.1, and is more fully explained in that subsection. The problem

concerns the computation of a geometrically defined correspondence that arises in the

study of algebraic groups. As such the problem is clearly delimited, and a satisfactory

solution—for the cases considered—is actually given in this thesis, in the form of an

algorithm that performs the computation. Before taking up the treatment of that

problem, I would like to make a few remarks about the thesis itself.

When first I had found the algorithm, some two years ago now, I would not have

guessed, although I was very pleased at finding a result I had been searching for for

some time, that this single result would fill a thesis, nor that it would take so long to

get all the details written down properly. At that time my solution of the problem

consisted of an informal description of the algorithm (but clear enough to write a

computer program) and a mental picture of how it was derived: arguments that now

appear mostly in 4.3 and 4.4, but not then worked out in so much detail. In the process

of formulating a precise description and proof, the text has expanded from just a few

pages to its current size. The details of the algorithm had originally been deduced

by careful inspection of particular cases where they were necessary—some of which

had in fact been found by detecting by computer the failure of certain properties for

premature versions of the algorithm—and combining the arguments that applied to

these individual cases into a single, general proof, made that proof rather complicated.

Also the nature of the arguments required the basic concepts used to be developed in

considerable detail.

The resulting structure of this thesis is as follows. The main text is divided into

four sections (chapters did not seem appropriate). The main result is 4.5.4, and the

rest serves either the formulation, proof or clarification of that result. In §4 the actual

derivation of the algorithm is given. This requires a parametrisation of irreducible

components of Fu, which is given in §3. Although the fundamental aspects of this

parametrisation can be found in [Spa II.6], the algorithm is so intimately related to it

that a complete description is in its place; meanwhile the opportunity is taken for a

slight adaption, and the investigation of some additional aspects that are important

for the computation. Both these sections use a number of facts of a linear algebraic

nature, which are derived in §2. Finally, in §1 the problem and basic objects of study

are introduced.

The arguments used in the proof—apart from an occasional reference to a result

in the literature—are mostly of a very explicit nature, and can been be derived by

elementary means, using only the basic theory of linear algebra and linear algebraic

groups. If the dissertation is in any way difficult, this is because of the multitude

of details and cases that have to be considered (the word ‘case’ occurs 428 times in

all), not the ‘depth’ of the individual arguments. I have taken considerable effort to

mention all relevant facts explicitly, and to present them in a coherent way; I hope
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that this has made the text accessible, despite its technical nature, to interested, not

necessarily specialised, mathematicians. (The dedication of this thesis is therefore not

merely a joke.) Since a lot of terms and notations are introduced, an index and a list

of symbols are provided. Also an ample supply of examples are given at the end of §3

and §4, to provide an illustration of the various cases that occur.

A number of incidental matters, that did not fit into the structure of the main

text, are treated in appendices. Appendix A describes the proper Robinson-Schensted

algorithm (readers not acquainted with this algorithm may wish to turn to this

appendix first), together with another algorithm that is closely related to the algorithm

of the main text. In appendix B the outcomes of the main algorithm are tabulated

for the groups of rank 2 and 3. Appendix C gives a computer program that performs

the algorithm, and also provides an inverse algorithm.

In the remainder of the preface I would like to briefly sketch the setting in which

the problem considered in this thesis has occurred. For a detailed discussion of these

matters see [Spr2] and [Spr3], but the following may give a first indication of the

geometric context. Note that the meaning of certain symbols differs from that in the

main text.

Let G be a connected reductive group,W its Weyl group, B a Borel subgroup and

B ∼= G/B the variety of all Borel subgroups. Consider the variety G̃ = G ×B B (the

notation is as in 3.1), where B acts on itself by conjugation; there is a G-equivariant

projection π: G̃→ B whose fibre at any B′ ∈ B is canonically isomorphic to B′. These

isomorphisms combine to a morphism ϕ: G̃→ G that is surjective and G-equivariant,

where G acts on itself by conjugation. Any fibre ϕ−1[g] is isomorphic via π to the set

of Borel subgroups containing g. The map ϕ, and more in particular its fibres ϕ−1[u]

at unipotent elements, are of considerable interest in the detailed study of conjugacy

classes of G. These fibres ϕ−1[u] are isomorphic to the varieties Bu in terms of which

the central problem of this thesis is formulated.

Now let V ⊂ G be the set of unipotent elements, let U = V ∩B be the unipotent

radical of B, and Ṽ = G ×B U ⊂ G̃. Consider the fibre product Y = Ṽ ×V Ṽ of

Ṽ with itself with respect to ϕ: there is a G-equivariant morphism Φ:Y → V with

Φ−1[u] ∼= ϕ−1[u] × ϕ−1[u] for any u ∈ V . There is also a G-equivariant projection

Π:Y → B×B that is induced by π. The fibre of Π at the point (B′, B′′) is isomorphic

via Φ to the set V ∩B′∩B′′, which is a connected subgroup of codimension rk(G) of the

stabiliser B′∩B′′ of that point. It follows that dim(Π−1[X]) = dim(G)−rk(G) for any

G-orbit X ⊆ B ×B. Now the set of these orbits is in bijection with W via the notion

of relative position (see 1.5); denote the orbit corresponding to w ∈W by O(w). Since

W is finite it follows that
{
Π−1[O(w)]

∣∣ w ∈W
}
is the set of irreducible components

of Y , which all have the same dimension.

On the other hand these components may be considered in relation to Φ. The

following two facts are quite non-trivial in their generality, but they have been

proved (by various people) in all cases: (a) there are finitely many G-orbits in V
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(i.e., unipotent conjugacy classes in G) (b) for each such orbit G · u, one has

dim(G · u) + dim(Φ−1[u]) = dim(Y ). It follows from these facts that the irreducible

components of Y can also be described as the closures of the irreducible components of

Φ−1[G ·u], where u ranges over the unipotent classes of G. Intersecting an irreducible

component of Φ−1[G · u] with Φ−1[u] yields an Au-orbit of irreducible components

of Φ−1[u]—where Au is the group of (connected) components of the centraliser of u

in G—and the irreducible components of Φ−1[u] are the cartesian products of pairs

of irreducible components of ϕ−1[u] ∼= Bu. When G is simple of type An, the groups

Au are always trivial. The given two descriptions of the set of irreducible components

of Y form the background of the correspondence that this thesis aims at computing

for classical groups; the properties that this correspondence must have according to

the above line of reasoning are formally expressed in 4.2.1.

It is recognised, however,

that this method may be difficult

for the uninitiated reader.

A. van Wijngaarden et al., [Wijn 0.1.1]
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