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ABSTRACT

Littelmann has given a combinatorial model for the characters of representations of semisimple Lie algebras, in
terms of certain paths traced in the space of (rational) weights. From it, a description of the decomposition of
tensor products can be derived that generalises the Littlewood-Richardson rule (the latter is valid in type An
only). We present a new combinatorial construction that expresses in a bijective manner the symmetry of
the tensor product in this path model. In type An, where there is a correspondence between paths and
skew tableaux, this construction is equivalent to Schützenberger’s jeu de taquin; in the general case the
construction retains its most crucial properties of symmetry and confluence.
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§1. Introduction.

In this note we wish to present a simple construction that appears to arise naturally in the context of
Littelmann’s paths. Indeed, we found it while trying to formulate an answer to a question asked (by Alain
Lascoux) during a lecture by Littelmann on this subject at the Séminaire Lotharingien; the question was
whether one could exhibit combinatorially the symmetry of the tensor product in the formula given, in
terms of paths, for tensor product decompositions.

This paper is organised as follows. After recalling some of Littelmann’s notions in §2, we analyse the
symmetry of the traditional Littlewood-Richardson rule in §3, and translate the procedure that exhibits
the symmetry (which is essentially jeu de taquin) into the language of paths. Then in §4 we extend
this construction successively to two broader classes of paths, with instances for other types of groups
than An, namely the classes of m-paths (built from the path models of minuscule representations) and of
ψ-paths (incorporating also the path models of quasi-minuscule representations); the latter removes any
restrictions on the type of the group or the representation. Finally in §5 we give a construction in the
context of arbitrary piecewise linear paths that generalises the earlier constructions; however, we have not
(yet) established the essential connection with Littelmann’s root operations for this general construction.

§2. Notations used.

We shall assume without explicit reference the notations and results of [Litt2]. We mention in particular
the following notations. We denote by X the weight lattice of a complex Lie algebra g, that for simplicity
we shall assume to be finite dimensional and reductive, and by Π the set of piecewise linear paths in the
space XQ = X ⊗Z Q of rational weights. All paths are parametrised by the interval [0, 1] ⊆ Q, and start
at 0, so that π(0) = 0 for all π ∈ Π, while π(1) denotes the end point of π. For µ ∈ X, the straight path
from 0 to µ is denoted by πµ. The reverse or dual path of π ∈ Π is denoted by π∗, and π ∗ π′ denotes
the concatenation of two paths. The set of paths π such that π(t) is dominant for all t ∈ [0, 1], and such
that π(1) ∈ X (i.e., it is an integral dominant weight), is denoted by P+. The root operators eα and fα
formally act on the free Z-module ZΠ, but since the image of every generator π ∈ Π of that Z-module
is either another such generator or 0, we shall consider the root operators as maps Π → Π ∪ {0}. The
subset of Π reachable from some π ∈ P+ by repeated application of root operators is denoted by Bπ.
To avoid too deeply nested subscripts we shall write ei and fi for the root operators eαi and fαi . For a
weight λ, a path π and a simple root α, we shall write bλ+ πcα for the number mint∈[0,1] 〈λ+ π(t), α∨〉,
or simply bπcα if λ = 0; the path π is called λ-dominant if bλ+ πcα ≥ 0 for all simple roots α.
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3 Paths in type An−1, tableaux, and jeu de taquin

§3. Paths in type An−1, tableaux, and jeu de taquin.

We shall first consider the correspondence between paths in type An−1 and Young tableaux, and the
connection between the Littlewood-Richardson rule in terms of paths and the classical one. Then we
shall consider the question of symmetry of these rules with respect to the order of the tensorands.

3.1. Paths and Littlewood-Richardson tableaux.

Let us first recall the well known correspondence between partitions with at most n parts and dominant
integral weights for g = gln. Let h ⊆ gln be the Cartan subalgebra consisting of diagonal matrices, and
b ⊆ gln the Borel subalgebgra of upper triangular matrices. For i = 1, . . . , n let εi ∈ h∗ be the weight that
takes the (i, i) diagonal entry; then the set of simple roots with respect to b is {αi | i = 1, . . . , n− 1 } where
αi = εi−εi+1, and the set of fundamental weights is {ωi | i = 1, . . . , n− 1 } where ωi =

∑
j≤i εj . We shall

identify any vector λ = (λ1, . . . , λn) ∈ Zn with the weight
∑n
i=1 λiεi; since one has 〈λ, α∨i 〉 = λi − λi+1,

it follows that this is a dominant integral weight if and only if λ is a partition.
Now we shall define a correspondence between the set Tabµ of semistandard Young tableaux of

shape µ, and the set Bπ for a specific path π = πc(µ) ∈ P+, which is determined as follows. Write µ as
a sum of terms ωi (so the term ωi is repeated µi − µi+1 times) ordered by (weakly) increasing index i,
and then replace each ωi by its expression

∑
j≤i εj as a sum of terms εj , again ordered by increasing

index. The path πc(µ) is obtained from the resulting sum by replacing each of the |µ| terms of the
form εj by the corresponding path πεj , and addition by concatenation. We shall call any path of the
form πεj1 ∗ · · · ∗ πεjl an ε-path of length l; such paths are characterised by the sequence j1, . . . , jl of
indices. If fi is applied to an ε-path and the result is not 0, then it changes one segment πεi into πεi+1

.
Therefore any path in Bπc(µ) is an ε-path of length |µ|. Inserting its sequence of indices into a Young
diagram of shape µ, proceeding by columns from right to left and from top to bottom within each column,
one obtains a tableau, and it can be shown that this defines a bijection from Bπc(µ) to Tabµ. Note that
a subsequence of segments contributing to any one column of length i of the tableau stems from the
sequence of segments πεj corresponding (before application of the fα) to one term ωi in the sum for µ.

Remark. In fact one could have used instead of πc(µ) another path π̄c(µ), formed by concatenating
straight line paths πωi corresponding to the terms ωi in the first sum for µ. One then obtains a bijection
betweenBπ̄c(µ) and the same set Tabµ of tableaux: every application of fα that does not yield 0 transforms
one path segment into another straight segment, of the form πεI with I an i-element subset of {1, . . . , n}
and εI =

∑
j∈I εj ; that segment corresponds to a column with set of entries I in the Young tableau.

Remarkably, Tabµ can even be used to describe in a direct way many other sets Bπ′ , where π′ ∈ P+

is an ε-path. For instance, if πr(µ) denotes the ε-path corresponding to the expression µ =
∑n
i=1 µiεi

(i.e., with weakly increasing indices), then each path in Bπr(µ) is an ε-path whose sequence of indices is
obtained by listing the entries of a tableau in Tabµ by rows from right to left. We have given prominence
to πc(µ) rather than to πr(µ) because it seems to be the preferred choice for mathematical reasons: the
proof that Bπ corresponds to Tabµ is the easiest for π = πc(µ), and the relation between Bπc(µ) and a
set of tableaux has analogues in other classical types (see [KaNa]), which is not the case with Bπr(µ).
Historically however it is (the set of sequences of indices corresponding to) Bπr(µ) that has received more
attention: for instance, the fact that the operators eα preserve compatibility with the tableau conditions
is already assumed implicitly in [Rob], and proved in [Macd, I (9.6)]. Note also that our choice is not
of crucial importance: while the relation between paths and tableaux was instrumental in finding the
construction presented below, that construction itself will be formulated in terms of paths, and applicable
regardless of any connection of those paths with tableaux.

By the decomposition formula of [Litt2], the multiplicity of the irreducible gln-module Vν in the tensor
product Vλ ⊗ Vµ equals the number of λ-dominant paths in Bπc(µ) of weight ν − λ, i.e., paths π ∈ Bπc(µ)

for which the translated path λ + π goes from λ to ν and lies entirely within the dominant chamber.
Each segment of λ + π goes from one dominant integral weight to another, so we obtain a sequence of
partitions from λ to ν that we shall call the λ-chain of π. If π was derived, as shown above, from T ∈ Tabµ,
then its λ-chain can be formed, starting from λ, by traversing T in the order indicated, and for every
entry i encountered forming a new partition by adding 1 to part i of the previous partition. If we extend
this procedure slightly by filling at each step the square (in row i) added to the Young diagram of the
partition with a particular number r, then this will associate to T a Littlewood-Richardson tableaux T ′

of shape ν/λ and weight µ (as used in the classical formulation of the Littlewood-Richardson rule). It
suffices to specify r: it is the row number in T of the entry i encountered at the current step.
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3.2 Symmetry of the Littlewood-Richardson rule

In fact this procedure defines a correspondence between the squares s of T and the squares t of T ′,
i.e., a bijection between the squares of the Young diagram of µ and those of the skew diagram ν/λ. This
bijection is such that in T the square s contains the row number the corresponding square t, while in T ′

the square t contains the row number of s. It follws that T can be reconstructed from T ′ by a quite similar
procedure. In fact one may consider both T and T ′ merely as ways to represent the bijection between
squares. The bijections so occurring can be characterised by geometric properties that are contained in
the notion of pictures ([Zel1]); using this notion it becomes obvious that for T ′ one finds exactly the set
of Littlewood-Richardson tableaux of shape ν/λ and weight µ. Pictures provide a very versatile means to
study these tableaux, due to the fact that many operations can be defined directly in terms of pictures,
see [vLee2] (in that paper the conditions in the definition of pictures are transposed; in citing results
we shall adapt for this difference). Below we shall freely use constructions defined for pictures and their
properties; for the convenience of those not acquainted with pictures, we shall also give the translations
of those constructions in terms of tableaux. It is worth noting that if one takes T to represent a path
π′ ∈ Bπr(µ) rather than π ∈ Bπc(µ), then one not only obtains the same set of admissible T (i.e., π is
λ-dominant if and only if π′ is), but for each such T the two orders of traversal lead to the same picture
(bijection between squares of µ and of ν/λ), and therefore construct the same Littlewood-Richardson
tableau T ′. The path π′ moreover has the property that its λ-chain gives the standardisation of the
semistandard tableau T ′, which is not the case with π.

3.2. Symmetry of the Littlewood-Richardson rule.

We now turn to the question of exhibiting the symmetry of the tensor product combinatorially in
type An−1, using Littlewood-Richardson tableaux.

We are looking for a bijection between Littlewood-Richardson tableaux of shape ν/λ and weight µ
on one side, and Littlewood-Richardson tableaux of shape ν/µ and weight λ on the other side. In
terms of pictures such a bijection is fairly easy to construct. There is a unique picture λ → −λ, which
may be “glued” to any given picture f : ν/λ → µ, to form a picture f̄ : ν → µ ] −λ (the operation ‘]’
is “concatenation” of skew diagrams in the anti-diagonal direction, or more precisely of classes of skew
diagrams modulo translation in the plane). Then one can apply the Schützenberger algorithm for pictures
to obtain a picture S(f̄): ν → λ]−µ; the image under the inverse picture S(f̄)−1 of the factor −µ of the
image is necessarily the subdiagram µ of ν, so by restriction of S(f̄) to the complement of this subdiagram
we obtain the desired picture ν/µ → λ. The construction is easily seen to be involutive, and hence it
defines a bijection between the sets of pictures Pic(ν/λ, µ) and Pic(ν/µ, λ).

In terms of Littlewood-Richardson tableaux such as T ′, this construction amounts to the following.
The skew tableau of shape ν/λ is extended to a tableau of shape ν by filling each square of λ with minus
its distance to the bottom of its column in λ (so the lowest square in each column gets −1, the square
above it −2, etc.); the important property of this subtableau of shape λ is that it corresponds under
the Schützenberger involution to the “canonical” tableau of shape and weight λ, in which each row i is
filled with entries i. One then applies the Schützenberger involution to the full semistandard tableau of
shape ν to obtain another such tableau in which the multiset of entries is negated, so that for each of
the negative entries in the original tableau (within the Young diagram of λ) one now has a positive entry
(at some other place of course), and vice versa; the subtableau of positive entries of the new tableau is a
Littlewood-Richardson tableau of shape ν/µ and weight λ.

This algorithm can be simplified, if one recalls that one way to compute the Schützenberger involution
applied to a Young tableau Y , is by “inflation”. This is done by traversing the entries i of Y in increasing
order (as usual processing equal entries from left to right), using them to repeatedly modify a tableau Z,
initially empty, as follows: one performs an outward jeu de taquin slide of Z into the square occupied
by i in Y , after which the vacated top-left corner of Z is filled with the value −i. Applying this algorithm
to the semistandard Young tableau extended from T ′, one sees that in a first stage of computation the
Schützenberger involution is applied to the subtableau of shape λ; as remarked, the result is the canonical
tableau of shape λ. In a second stage outward slides are then applied to this tableau according to T ′; the
(negative) entries added at the top-left during the second stage can be ignored, since they will be removed
from the final result anyway. So the bijection expressing the symmetry of the Littlewood-Richardson rule
with respect to the partitions λ and µ describing the tensorands is given by jeu de taquin, rather than by
the full Schützenberger algorithm; it is described in the following proposition, whose proof is contained
in the reasoning above.
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3.3 Jeu de taquin for chains of partitions, and for paths

3.2.1. Proposition. A bijection between Littlewood-Richardson tableaux L of shape ν/λ and weight µ
and Littlewood-Richardson tableaux M of shape ν/µ and weight λ is given by the following algorithm:
the tableau M is obtained from the canonical tableau of shape and weight λ by applying a series of
successive outward jeu de taquin slides into the squares of ν/λ, as ordered by increasing entries in L,
where squares with equal entries are ordered from left to right. Applying the same algorithm to M
(interchanging the values of λ and µ) will reconstruct L.

3.3. Jeu de taquin for chains of partitions, and for paths.

We shall now translate the construction above back in terms of paths, which will result in a remarkably
simple operation that can be generalised to other types than An−1. In associating paths with tableaux
such as L and M in the proposition above, sequences of partitions are natural intermediate objects: on
one hand L is used there only to obtain an ordering of the squares within its shape ν/λ, as represented
by its standardisation, which corresponds to a saturated increasing chain of partitions from λ to ν; on
the other hand such a chain of partitions is the λ-chain of some ε-path.

As was noted above, the λ-chain of a λ-dominant path π ∈ Bπc(µ) does not correspond to the
standardisation of the corresponding Littlewood-Richardson tableau T ′. We can nevertheless interpret the
jeu de taquin process as operating directly on paths, in two ways. One is to pragmatically choose to work
with λ-dominant paths in Bπr(µ) rather than in Bπc(µ); as remarked above, the λ-chain of such a path does
correspond to the standardisation the associated Littlewood-Richardson tableau. More fundamentally,
one may observe that T ′ really represents a picture ν/λ→ µ, which has many specialisations (standard
tableaux of shape ν/λ that can be associated with it according to some “reading” of µ); one of these is
the standardisation of T ′, while the λ-chain of π ∈ Bπc(µ) corresponds to another. Moreover, different
specialisations of the same picture have the property that when used to determine sequences of jeu de
taquin slides, the final effect of any of these sequences of slides on the same initial tableau is identical
(this is more generally true for tableaux that are dual equivalent). Therefore, if in proposition 3.2.1 we
take for L the Littlewood-Richardson tableau constructed from π ∈ Bπc(µ), then the same tableau M will
be computed as in the proposition if we apply slides according to the λ-chain of π, rather than according
to the specialisation of L.

We arrive at describing jeu de taquin in terms of chains of partitions. It is not necessary that the
initial tableau to which we apply outward slides is a Young tableau; therefore we shall admit chains
that start in an arbitrary partition κ. Given a saturated increasing chain of partitions from κ to λ (for
instance, with κ = (0), the 0-chain of πc(λ)) corresponding to a (semi)standard tableau C, and a similar
chain from λ to ν (the λ-chain of a λ-dominant ε-path) corresponding to a tableau L, the question is
to describe the chain of partitions corresponding to the skew tableau M resulting from the application
of successive outward jeu de taquin slides to C into the squares added in the chain of L. This has
been done in [vLee1, §2] (for the Schützenberger algorithm, but it applies also to jeu de taquin), see
also [vLee4, §2.1]. The family of partitions λ[i,j], defined by the fact that λ[i,0], . . . , λ[i,l] is the chain
corresponding to the tableau obtained after applying i slides to C, satisfies a local condition that allows
λ[i+1,j] to be determined when λ[i,j], λ[i,j+1], and λ[i+1,j+1] are given:

3.3.1. Rule. One has λ[i,j+1] = λ[i+1,j] if and only if the two squares of λ[i+1,j+1] \ λ[i,j] are adjacent.

Note that in the case that the mentioned squares are non-adjacent, λ[i+1,j] is the unique partition
strictly between λ[i,j] and λ[i+1,j+1] that differs from λ[i,j+1]. This rule allows all partitions λ[i,j] to be
computed when they are initially given only for pairs (i, j) with i = 0 (by means of C) or j = l (by
means of L). The same rule also allows λ[i,j+1] to be determined when λ[i,j], λ[i+1,j], and λ[i+1,j+1]

are given. This reaffirms that the construction of proposition 3.2.1 is its own inverse. Note that in the
proposition we take C to be the canonical tableau of shape λ; this is possible since we know that M
must be a Littlewood-Richardson tableau, and therefore be reducible by jeu de taquin to this canonical
tableau. In order to define a similar construction in terms of paths however, it will be necessary to
explicitly supply data corresponding to C: if we want to construct from a λ-dominant path p ∈ Bπ a
corresponding µ-dominant path p′ (where µ = π(1)), then we must specify the path π′ ∈ P+ such that
µ ∈ Bπ′ ; similiarly the inverse operation requires π to be specified. Therefore the path analogue of the
bijection of proposition 3.2.1 will be a bijective correspondence (p, π′)↔ (p′, π).

We shall now reformulate the rule above in terms of ε-paths. With respect to chains of partitions there
are some minor differences. First of all, partitions are limited to those with at most n parts. Second,
we are interested primarily in the vertical and horizontal difference vectors vi,j = λ[i+1,j] − λ[i,j] and
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3.3 Jeu de taquin for chains of partitions, and for paths

hi,j = λ[i,j+1]−λ[i,j], which lie in the set {ε1, . . . , εn}, and represent segments of ε-paths; indeed, they are
equal to εr where r is the row number of the square λ[i+1,j] \λ[i,j] respectively of the square λ[i,j+1] \λ[i,j].
Now in case the two squares mentioned in rule 3.3.1 are non-adjacent, the square λ[i+1,j] \ λ[i,j] is equal
to λ[i+1,j+1] \λ[i,j+1], and similarly the square λ[i,j+1] \λ[i,j] is equal to λ[i+1,j+1] \λ[i+1,j]; in this case we
therefore certainly have vi,j = vi,j+1 and (equivalently) hi+1,j = hi,j . These two equalities remain valid
in case the squares mentioned in rule 3.3.1 are horizontally adjacent, i.e., they both lie in the same row r,
since in that case vi,j = vi,j+1 = hi+1,j = hi,j = εr. Therefore, the only case where vi,j 6= vi,j+1, and
where hi+1,j 6= hi,j , is when the two squares of λ[i+1,j+1] \λ[i,j] are vertically adjacent; in that case, if the
rows containing these squares are r and r+ 1, one has hi,j = εr = vi,j and vi,j+1 = εr+1 = hi+1,j . Given
these values of hi,j and vi,j+1 (or of vi,j and hi+1,j), the condition that there is indeed vertical adjacency

can be expressed as λ
[i,j]
r = λ

[i,j]
r+1, or equivalently as 〈λ[i,j], α∨r 〉 = 0. Note that with this condition

satisfied it would not even be possible to have vi,j = vi,j+1, since that would make 〈λ[i,j+1], α∨r 〉 = −1,
contradicting the fact that λ[i,j+1] is a partition, and corresponds to a dominant weight. We arrive at the
following rule that describes how vi,j and hi+1,j are determined by the values of hi,j , vi,j+1 and λ[i,j].

3.3.2. Rule. One has vi,j = vi,j+1 and hi+1,j = hi,j , unless for some r one has hi,j = εr, vi,j+1 = εr+1,
and 〈λ[i,j], α∨r 〉 = 0, in which case vi,j = εr and hi+1,j = εr+1.

We can now reformulate jeu de taquin in terms of ε-paths. A strict translation of proposition 3.2.1
into this language would give a statement that only applies to ε-paths that correspond to semistandard
Young tableaux, but as explained above we remove that restriction by supplying an extra parameter π′.
To recover that proposition one should take κ = (0), and π′ equal to the ε-path corresponding to the
canonical tableau of shape λ, i.e., to πc(λ) or πr(λ), depending on the chosen correspondence between
paths and tableaux.

3.3.3. Construction (jeu de taquin for ε-paths). Let κ, λ, ν be dominant integral weights for gln,
π′ a κ-dominant ε-path of length l with π′(1) = λ − κ, and p a λ-dominant ε-path of length k with
p(1) = ν − λ. We construct a dominant integral weight µ, a κ-dominant ε-path π of length k with
π(1) = µ− κ, and a µ-dominant ε-path p′ of length l with p′(1) = ν − µ in the following steps.
◦ Set h0,0, . . . , h0,l−1 according to the sequence of segments of π′, and v0,l, . . . , vk−1,l according to the

sequence of segments of p;
◦ Set λ[0,j] := κ+

∑
j′<j h0,j′ for 0 ≤ j ≤ l, and λ[i,l] := λ+

∑
i′<i vi′,l for 0 ≤ i ≤ k;

◦ Determine the values hi,j for 0 < i ≤ k and l > j ≥ 0, as well as vi,j for 0 ≤ i < k and l > j ≥ 0
using rule 3.3.2, setting λ[i,j+1] := λ[i,j] + vi,j = λ[i+1,j+1] − hi+1,j after each application of the rule;
◦ Return π = πv0,0 ∗ · · · ∗ πvk−1,0

and p′ = πhk,0 ∗ · · · ∗ πhk,l−1
.

Note that the relations between the parameters of the construction allow all of them to be deduced
if κ, π′, and p are given; we shall therefore consider the construction to be parametrised by (κ, π′, p), and
to return the pair (π, p′). The following theorem is obvious, both from the symmetry of the construction,
and from the fact that that construction is just a reformulation of jeu de taquin.

3.3.4. Theorem (symmetry of jeu de taquin for ε-paths). The construction 3.3.3 is its own inverse:
if when applied to (κ, π′, p) it returns (π, p′), then applied to (κ, π, p′) it will return (π′, p). Moreover, it
is symmetric with respect to dualisation of paths: when applied to (ν, p∗, π′∗) it will return (p′∗, π∗).

Despite its somewhat technical formulation, the following lemma is just an expression of the trivial
fact that jeu de taquin consists of consecutive application of slides: performing inward slides according
to a path π′2 followed by performing inward slides according to π′1 amounts to performing inward slides
according to the concatenation π′1 ∗ π′2.

3.3.5. Lemma. Let construction 3.3.3 be applicable to (κ, π′, p). If π′ is of the form π′1 ∗ π′2, then
the construction is applicable to (κ + π′1(1), π′2, p), and calling the result of this application (q, p′2), it is
also applicable to (κ, π′1, q); calling the result of this second application (π, p′1), the result of applying the
construction to (κ, π′, p) will be (π, p′1∗p′2). A similar composition formula holds if p is of the form p1∗p2.

The following theorem establishes the fundamental link between jeu de taquin and Littelmans’s
root operators eα and fα. It is not an entirely new result: the fact that the definition of eα and fα
corresponds to jeu de taquin on tableaux of two rows is well known to experts; a discussion of this
relation including a proof of a statement equivalent to the theorem can be found in in [vLee4, §3.1]. We
shall give another proof here that is formulated in terms of paths, so that generalisation to other types
will be straightforward.
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4 Jeu de taquin for other types of groups

3.3.6. Theorem. In the situation of construction 3.3.3 the path π can be obtained from p by application
of a sequence of operators ei, and similarly the path p′ can be obtained from π′ by application of a sequence
of operators fi. In particular, if κ = 0, one has p ∈ Bπ and p′ ∈ Bπ′ .

Proof. By symmetry (theorem 3.3.4) it suffices to prove the first statement (about p and π). By
lemma 3.3.5, it will suffice to prove the case where π′ has length 1, which we therefore assume henceforth.
In order to proceed by induction on the length of p, it is necessary to strengthen the statement being
proved as follows: there exists a sequence of indices i1, . . . , in (with n ≥ 0), and a sequence of paths
p = pn, pn−1, . . . , p0 = π, such that for j = n, . . . , 1, one has pj−1 = eij (pj) and bκ + pjcαij = −1

(which shows that pj is not κ-dominant for j > 0). If p is of length 0 we take n = 0 and there is
nothing to prove; assume therefore that p has positive length. Let v = λ[1,1]−λ[0,1] in construction 3.3.3,
so that we can write p = πv ∗ q; similarly put v′ = λ[1,0] − λ[0,0] and π = πv′ ∗ ρ. With κ′ = λ[1,0]

we consider the construction applied to (κ′, πh1,0 , q), which by lemma 3.3.5 returns (ρ, p′). By the
induction hypothesis there exist indices i1, . . . , im and paths q = qm, . . . , q0 = ρ with qj−1 = eij (qj)
and bκ′ + qjcαij = −1 for 0 < j ≤ m. For j ≤ m we put pj = πv′ ∗ qj (so that in particular p0 = π).

Then for 0 < j ≤ m one has bκ + pjcαij = bκ′ + qjcαij = −1, since the path πv′ is κ-dominant with

πv′(1) = v′ = κ′ − κ. We see moreover that the minimum taken in the first expression is attained
only in the second part of the concatentation pj = πv′ ∗ qj ; from the definition of ei we therefore have
ei(pj) = πv′ ∗ ej(qj) = πv′ ∗ qj−1 = pj−1. Now if v′ = v, we have p = πv ∗ q = πv′ ∗ qm = pm
so that we take n = m and we are done. Otherwise we are in the exceptional case of rule 3.3.2 for
(i, j) = (0, 0), so that π′ = πv′ = πεr , πv = πεr+1

, and 〈κ, α∨r 〉 = 〈λ[1,1], α∨r 〉 = 0 for some r. Since

the path q is λ[1,1]-dominant, this implies 〈q(t), α∨r 〉 ≥ 0 for all t, so that bκ + pcαr = −1, which
minimum is first attained at the point of concatenation of p = πv ∗ q; consequently, we have by the
definition of er that er(p) = πεr ∗ q = πv′ ∗ qm = pm. In this case we therefore put n = m + 1
and in = r, and we have established all that needs to be proved.

§4. Jeu de taquin for other types of groups.

Now the stage has been set in type An−1, we may consider possible generalisations to other types of
groups. While the traditional planar form of jeu de taquin does not seem to be easily generalised, the
situation is quite different for the formulation in terms of paths, since there are only a few points in
the discussion above that are specific for type An−1, and need replacement for other types. Firstly, one
needs a replacement for the set {πεi | i = 1, . . . , n } of elementary path segments, and hence for the class
of ε-paths; secondly, rule 3.3.2 will need to be adapted to this new class of paths. Once this is done, a
counterpart of the construction 3.3.3 can be defined with only the most obvious adaptations. Provided
the replacement for rule 3.3.2 preserves its symmetry, the analogue of theorem 3.3.4 will be valid, with
an equally simple proof; the analogue of lemma 3.3.5 remains a triviality. Having succeeded so far, we
shall have a involutive construction that operates on pairs (p, π′) of paths; then in order that we can use
this construction to define, for any paths π, π′ ∈ P+ (in the chosen class) with π(1) = µ and π′(1) = λ,
a bijective correspondence between λ-dominant paths in Bπ and µ-dominant paths in Bπ′ , it is essential
that the analogue of theorem 3.3.6 holds. Most of its proof will remain valid without modification, but
the final argument involving a single configuration governed by (an analogue of) rule 3.3.2 needs to be
verified. Each time we establish these points, we obtain a combinatorial analogue of jeu de taquin that
shares two of its most fundamental properties: symmetry (theorem 3.3.4) and confluence, i.e., the fact
that, for κ = 0, the correspondence p → π is independent of the choice of π′ ∈ P+ (this will be a
consequence of the analogue of theorem 3.3.6 and the fact that from any path p at most one path π ∈ P+

can be obtained by applications of root operators eα). The combinatorial constructions that we shall find
have a common generalisation to arbitrary piecewise linear paths, and maybe even to continuous paths;
however, in this generality the combinatorial nature of the construction will be lost.

4.1. Minuscule representations and m-paths.

Let W be the Weyl group of g. A non-trivial irreducible representation of g is called minuscule if its set
of weights forms a single W -orbit; these weights are called minuscule weights. The following represen-
tations are minuscule: all fundamental representations in type An, the natural (defining) representation
in types Cn and Dn, the spin representation in type Bn, the half-spin representations in type Dn, the
two 27-dimensional representations in type E6, and the 56-dimensional representation in type E7; there
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are no minuscule representations in types G2, F4 and E8, since, as the weight lattice coincides with the
root lattice in these types, all representations contain the weight 0. For any minuscule weight m and any
root α one has 〈m,α∨〉 ∈ {−1, 0, 1}, since otherwise m+ Zα would intersect the weight system in more
than two points. Therefore one has Bπλ = {πm | m ∈Wλ } for any dominant minuscule weight λ. This
makes the class of paths obtained by concatenation of segments πm for m minuscule a good candidate
to replace the class of ε-paths. We shall call any concatenation of l segments of the form πm, with m
minuscule, an m-path (pun not intended) of length l.

In order to formulate an analogue of rule 3.3.2 for m-paths, we are led to consider the following
situation. Let κ, λ and µ be dominant integral weights such that πλ−κ and πν−λ are m-paths of length 1;
the question is to find a dominant weight µ such that πµ−κ can be obtained from πν−λ by a series of
applications of operators eα with 〈κ, α∨〉 = 0, and such that the argument πvi to which the operator is
applied satisfies 〈vi, α∨〉 = −1 (there is a similar condition for the transformation πλ−κ → πν−µ, which
involves operators fα). The main difference with the situation for ε-paths is that, whereas in that case
at most one application of er suffices (which transforms πν−λ = πεr+1

into πµ−κ = πεr ), a series of
applications may be needed for m-paths. This phenomeneon already occurs in type An−1: if one takes
κ = ν = 0, and λ = ωi, so that λ − κ = ωi = ε{1,...,i}, and ν − λ = −ωi = ε{i+1,...,n}, then the only
possibility is to have µ = ωn−i, so that µ − κ = ωn−i = ε{1,...,n−i} and ν − µ = −ωn−i = ε{n−i+1,...,n};
the transformation of πε{i+1,...,n} into πε{1,...,n−i} requires a total of i(n− i) applications of operators εα
(some operators may be applied more than once, but never twice in succession).

We see in this example that the seqence of operators applied may not be unique (unlike in the proof
of theorem 3.3.6), but the final result is. In fact it is not difficult to see that this is true in general. Let
S = { i | 〈κ, α∨i 〉 = 〈ν, α∨i 〉 = 0 }, and put v0 = ν − λ, h0 = λ − κ; these are the initial candidates for
µ − κ and ν − µ (the sum of these candidates will always be ν − κ). In order that µ be dominant, it is
necessary that 〈µ− κ, α∨i 〉 = 〈µ− ν, α∨i 〉 ≥ 0 for all i ∈ S. Therefore, while there exists for the current
candidates vj and hj for µ − κ and ν − µ an i ∈ S with 〈vj , α∨i 〉 = 〈−hj , α∨i 〉 = −1 we choose such
an i and replace the candidates by vj+1 = sαi(vj) = vj + αi and hj+1 = sαi(hj) = hj − αi. After a
finite number of steps this process terminates, and we set µ = κ+ vl = ν − hl for the final values vl, hl.
Writing Wκ,ν for the subgroup of W stabilising κ and ν (it is generated by { sαi | i ∈ S }), and domWκ,ν

for the map that sends any weight to the Wκ,ν-dominant representative of its Wκ,ν-orbit, we clearly have
µ− κ = domWκ,ν (ν − λ) and µ− ν = domWκ,ν (κ− λ), which shows that these values are independent of
the choices made of the indices i. We have achieved 〈µ, α∨i 〉 ≥ 0 for all i ∈ S; to prove that µ is dominant
it suffices to establish the same for i /∈ S. For such i we have 〈κ, α∨i 〉 ≥ 1 or 〈ν, α∨i 〉 ≥ 1 (possible both);
since 〈µ− κ, α∨i 〉 and 〈ν − µ, α∨i 〉 lie in {−1, 0, 1}, either of these inequalities implies 〈µ, α∨i 〉 ≥ 0. From
this description we see that in fact µ = domW (κ + ν − λ). We can therefore formulate a generalisation
of rule 3.3.2 simply as follows.

4.1.1. Rule. λ[i+1,j] = domW (λ[i,j] + λ[i+1,j+1] − λ[i,j+1]).

4.1.2. Lemma. For fixed values of λ[i,j] and λ[i+1,j+1], the correspondence between λ[i,j+1] and λ[i+1,j]

determined by rule 4.1.1 is symmetrical. Moreover the rule is symmetrical in λ[i,j] and λ[i+1,j+1].

Proof. From the considerations above it follows that µ = w(κ + ν − λ) for some w ∈ W that fixes
κ and ν; this implies λ = w−1(κ + ν − µ), and since λ is dominant, this establishes the first symmetry.
The second symmetry is obvious.

As the path segments hi,j and vi,j are absent from the formulation of the rule 4.1.1, we can formulate a
construction that is in the spirit of the original formulation of jeu de taquin in term of chains of partitions,
in that only a doubly indexed family of partitions is considered. It should be noted however that paths
were used to find rule 4.1.1, and they will play a rôle in proofs concerning the construction as well.

4.1.3. Construction (jeu de taquin for m-paths). Let κ, λ, ν be dominant integral weights for g,
π′ a κ-dominant m-path of length l with π′(1) = λ − κ, and p a λ-dominant m-path of length k with
p(1) = ν − λ; we assume for each of π′ and p that their segments are traversed at equal speeds. We
construct a dominant integral weight µ, a κ-dominant m-path π of length k with π(1) = µ − κ, and a
µ-dominant m-path p′ of length l with p′(1) = ν − µ in the following steps.
◦ Set λ[0,j] := κ+ π′(j/l) for 0 ≤ j ≤ l, and λ[i,l] := λ+ p(i/k) for 0 ≤ i ≤ k;
◦ Determine the values λ[i,j] for 0 < i ≤ k and l > j ≥ 0 using rule 4.1.1;
◦ Return π = πv1 ∗ · · · ∗πvk and p′ = πh1

∗ · · · ∗πhl , where vi = λ[i,0]−λ[i−1,0] and hj = λ[k,j]−λ[k,j−1].
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4.1.4. Theorem (symmetry of jeu de taquin for m-paths). The construction 4.1.3 is its own
inverse: if when applied to (κ, π′, p) it returns (π, p′), then applied to (κ, π, p′) it will return (π′, p).
Moreover, it is symmetric with respect to dualisation of paths: when applied to (ν, p∗, π′∗) it will return
(p′∗, π∗).

Proof. This is immediate from lemma 4.1.2.

4.1.5. Lemma. Lemma 3.3.5 remains valid when construction 3.3.3 is replaced by construction 4.1.3.

4.1.6. Theorem. In the situation of construction 4.1.3 the path π can be obtained from p by application
of a sequence of operators ei, and similarly the path p′ can be obtained from π′ by application of a sequence
of operators fi. In particular, if κ = 0, one has p ∈ Bπ and p′ ∈ Bπ′ .

Proof. The proof of theorem 3.3.6 can be followed literally, with the obvious replacement of references
by their counterparts for m-paths, up to and including the proof that ei(pj) = pj−1 for 0 < j ≤ m; after
that we continue as follows. Let v = v0, . . . , vl = v′ be the sequence of vectors in the discussion preceding
the statement of rule 4.1.1; put n = m+ l and pn−i = πvi ∗q for i = 0, . . . , l (this agrees with the previous
definition of pm, and we have pn = p). It was established there that for all i < l there exists a simple
root α such that 〈κ, α∨〉 = 〈λ[1,1], α∨〉 = 0, 〈vi, α∨〉 = −1, and vi+1 = sα(vi), so that πvi+1

= eα(πvi).

Since the path q is λ[1,1]-dominant we have 〈q(t), α∨〉 ≥ 0 for all t, so that bκ + pn−icα = −1, and
eα(pn−i) = eα(πvi ∗ q) = πvi+1

∗ q = pn−i−1; this establishes all that needs to be proved.

4.2. Quasi-minuscule weights and ψ-paths.

We can extend the class of paths for which our construction works beyond that of m-paths by allowing
path segments that correspond to the weights of representations slightly larger than the minuscule ones,
which will in particular allow us to treat paths for groups of the types G2, F4, and E8 that do not possess
minuscule representations. As we shall see, the extra freedom will lead to a considerable increase in the
number of situations that need to be treated.

An irreducible representation is called quasi-minuscule if its set of weights consists of two W -orbits,
one of which is {0}; the weights in the other orbit are called quasi-minuscule weights. The orbit of
quasi-minuscule weights is contained in the root lattice, and its dominant representative is a minimal
non-zero element of the intersection of the dominant chamber with the root lattice; in particular quasi-
minuscule weights are roots. One checks easily that for every simple type there is a unique quasi-minuscule
representation: this is the adjoint representation for the simply laced types An, Dn and En, and the
representation whose non-zero weights are the short roots for the other types Bn, Cn, F4, and G2 (for
type Bn this is the natural representation). For similar reasons as mentioned for minuscule weights, one
has for any root α and any quasi-minuscule weight m /∈ {−α, α} that 〈m,α∨〉 ∈ {−1, 0, 1}. It follows
that if λ is a dominant quasi-minuscule weight, then the only paths in Bπλ that are not of the form πm
for m ∈ Wλ are those of the form eα(π−α) = fα(πα) = π−α/2 ∗ πα/2 for the simple roots α occurring
in Wλ; we shall denote such a path by ψα. We define a ψ-path of length l to be a concatenation of
l segments that occur in the union of the sets Bπλ for the dominant weights λ that are either minuscule
or quasi-minuscule.

Now we consider the question of extending rule 4.1.1 to deal with any pair of ψ-paths of length 1. As
before we consider dominant integral weights κ, λ, ν, and we put S = { i | 〈κ, α∨i 〉 = 〈ν, α∨i 〉 = 0 }. Since
the paths involved are no longer necessarily linear, it does not suffice to consider just the differences λ−κ
and ν − λ; therefore let p and q be ψ-paths of length 1 such that p(1) = ν − λ and q(1) = λ − κ. Our
goal is to find paths p′ and q′, obtained from p and q respectively by applications of operators eα and fα,
such that µ = κ + p′(1) = ν − q′(1) is dominant, and moreover p′ is κ-dominant and q′ is µ-dominant
(this is an extra condition only when p′ or q′ is of the form ψα).

We consider first the case that both p and q are linear (i.e., not of the form ψα), which includes the
case of m-paths treated above. Like in that case we perform an iteration, but now on a pair of paths,
which we initialise by p0 = p, q0 = q. The iteration is the following one:
(∗) As long as there exists for the current pair pj , qj some i ∈ S with 〈pj(1), α∨i 〉 = 〈−qj(1), α∨i 〉 = −1,

we choose such an i and put pj+1 = eαi(pj) and qj+1 = fαi(qj).
All the paths so obtained are linear, since we could only have pj+1 = ψα if αi = α and pj = π−α, which
would violate 〈pj(1), α∨i 〉 = −1. It follows also that this iteration cannot make a transition from negative
to positive roots: if any pj is of the form πβ for a negative root β, then the same is true for all pj ’s; a
similar statement holds when pj = πβ for a positive root β, and also for the qj ’s in place of the pj ’s.
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4.2 Quasi-minuscule weights and ψ-paths

If for the final paths pk, qk obtained after the iteration, the weight µ̃ = λ + pk(1) = ν − qk(1) is
dominant, then we put p′ = pk and q′ = qk. Otherwise, let i be such that 〈µ̃, α∨i 〉 < 0. Suppose first that
i /∈ S; then since either 〈κ, α∨i 〉 > 0 or 〈λ, α∨i 〉 > 0, we must have pk = π−αi or qk = παi (possibly both).
We put p′ = pk+1 = eαi(pk) and q′ = qk+1 = fαi(qk); since µ = λ+ p′(1) = ν− q′(1) is equal to κ or ν, it
is dominant, and one has 〈µ, α∨i 〉 = 1, from which it follows that p′ is κ-dominant and q′ is µ-dominant.
Now suppose i ∈ S; since the iteration (∗) has terminated, it must be that 〈pk(1), α∨i 〉 = −2, so pk = π−αi
and qk = παi . We then put pk+1 = qk+1 = ψαi and pk+2 = πα, qk+2 = π−α (so that pj+1 = eαi(pj) and
qj+1 = fαi(qj) for j = k, k + 1), after which we resume the iteration (∗), and set p′ and q′ respectively
to the final paths pl, ql so obtained. From the fact that the iteration cannot make a transition between
negative and positive roots it follows that this time µ = λ+ p′(1) = ν − q′(1) must be dominant.

Next we consider the case that p = ψα and q = ψβ for simple roots α, β. If α 6= β or if α = β and
〈λ, α∨〉 > 1 then we put p′ = p and q′ = q, so that µ = κ = λ = ν. If α = β and 〈κ, α∨〉 = 1 we put
p1 = eα(p) = πα and q1 = fα(q) = π−α and then perform iteration (∗). We set p′ and q′ respectively to
the final paths pl, ql obtained; as in the case above we see that µ = λ+ p′(1) = ν − q′(1) is dominant.

We are left with the possibility that exactly one of p and q is linear. We shall only treat the case
that this is q, as the other case is symmetric (by interchange of κ and ν and dualisation of the paths); let
p = ψα. If 〈κ, α∨〉 > 0, then we put p′ = p and q′ = q, so that µ = κ is dominant and p′ is κ-dominant;
we assume henceforth that 〈κ, α∨〉 = 0. If q = πα then we put p′ = eα(p) = πα and q′ = fα(q) = ψα.
Otherwise we put p1 = eα(p) = πα and q1 = fα(q), after which perform iteration (∗), calling the final
paths obtained pk, qk. As in the case of linear p and q it is possible that for µ̃ = λ + pk(1) = ν − qk(1)
there is some i for which 〈µ̃, α∨i 〉 < 0, but this time only for i /∈ S and qk = παi , since pk 6= π−αi . If this
is the case we put p′ = pk+1 = eαi(pk) and q′ = qk+1 = fαi(qk) = ψαi , and otherwise (µ̃ is dominant) we
put p′ = pk and q′ = qk; both cases are just like the corresponding ones for linear p and q.

This concludes the description of the determination of p′ and q′. We shall now try to formulate the
result as concisely as possible. To this end we shall use the fact that µ determines either of p′ and q′ if
the path in question is linear, i.e., if µ differs from κ respectively from ν; if not, then the path is of the
form ψα, and it suffices to specify in addition to µ the simple root α. We also simplify the formulation
by using the fact that if λ equals either κ or ν, then the other one can be expressed as κ+ ν − λ. Since
like before the rule stated will be used in a larger construction, we give the weights and path segments
in the construction as elements of doubly indexed families. We leave it to the reader to verify that the
results computed above satisfy the description below.

4.2.1. Rule. Let κ = λ[i,j], λ = λ[i,j+1], ν = λ[i+1,j+1], p = vi,j+1, and q = hi,j ; the weight µ = λ[i+1,j]

and the paths p′ = vi,j and q′ = hi+1,j are determined according to the following cases.
(a) If p and q are linear, then µ = domW (κ+ ν − λ); in case µ equals κ or ν, the corresponding path is

equal to ψα, where α = µ− domWκ,ν
(κ+ ν − λ).

(b) If 〈λ, α∨〉 = 1 and ψα ∈ {p, q} for some simple root α, and either p = q or 〈κ+ ν − λ, α∨〉 = 0, then
µ = domW (κ + ν − λ + α); in case µ equals κ or ν, the corresponding path is equal to ψα′ , where
α′ = µ− domWκ,ν (κ+ ν − λ+ α).

(c) If ψα ∈ {p, q} for some simple root α, with 〈λ, α∨〉 = 2 and 〈κ+ ν − λ, α∨〉 = 0, then p′ = q, q′ = p,
and µ = λ.

(d) If either {p, q} = {ψα, ψβ} for simple roots α 6= β, or ψα ∈ {p, q} for some simple root α and
〈κ+ ν − λ, α∨〉 > 0, then p′ = p, q′ = q, and µ = κ+ ν − λ.

4.2.2. Lemma. For fixed values of λ[i,j] and λ[i+1,j+1], the correspondence determined by rule 4.2.1
between λ[i,j+1] and λ[i+1,j], and between (hi,j , vi,j+1) and (vi,j , hi+1,j), is symmetrical.

Proof. This follows from a careful analysis of the different cases that can arise. In cases (c) and (d)
of rule 4.2.1, replacement of λ by the indicated value of µ leads to the same case, and gives back the
original value of λ for µ. We may therefore assume that one of cases (a) and (b) applies. Define
weights µ0, µ1, µ2, µ3 by µ0 = κ + ν − λ, µ1 = µ0 in case (a) and µ1 = µ0 + α in case (b),
µ2 = domWκ,ν (µ1), and µ3 = µ; replacing λ by µ, call the corresponding weights λ0, λ1, λ2, λ3. One
then proves successively that λi = κ + ν − µ3−i for i = 0, 1, 2, 3 in a straightforward manner in all
the cases, using the details that were given before the statement of rule 4.2.1.

4.2.3. Construction (jeu de taquin for ψ-paths). Let κ, λ, ν be dominant integral weights for g,
π′ a κ-dominant ψ-path of length l with π′(1) = λ − κ, and p a λ-dominant ψ-path of length k with
p(1) = ν − λ. We construct a dominant integral weight µ, a κ-dominant ψ-path π of length k with
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4.2 Quasi-minuscule weights and ψ-paths

π(1) = µ− κ, and a µ-dominant ψ-path p′ of length l with p′(1) = ν − µ, in the following steps.
◦ Let π′ = h0,0 ∗ · · · ∗ h0,l−1 and p = v0,l ∗ · · · ∗ vk−1,l, where the hi,j and vi,j are ψ-paths of length 1;
◦ Set λ[0,j] := κ+

∑
j′<j h0,j′(1) for 0 ≤ j ≤ l, and λ[i,l] := λ+

∑
i′<i vi′,l(1) for 0 ≤ i ≤ k;

◦ Determine the weights λ[i+1,j] and the paths hi+1,j and vi,j for 0 ≤ i < k and l > j ≥ 0, using
rule 4.2.1;
◦ Return π = v0,0 ∗ · · · ∗ vk−1,0 and p′ = hk,0 ∗ · · · ∗ hk,l−1.

4.2.4. Theorem (symmetry of jeu de taquin for ψ-paths). The construction 4.2.3 is its own
inverse: if when applied to (κ, π′, p) it returns (π, p′), then applied to (κ, π, p′) it will return (π′, p).
Moreover, it is symmetric with respect to dualisation of paths: when applied to (ν, p∗, π′∗) it will return
(p′∗, π∗).

Proof. This is immediate from lemma 4.2.2.

4.2.5. Lemma. Lemma 3.3.5 remains valid when construction 3.3.3 is replaced by construction 4.2.3.

4.2.6. Theorem. In the situation of construction 4.2.3 the path π can be obtained from p by application
of a sequence of operators ei, and similarly the path p′ can be obtained from π′ by application of a sequence
of operators fi. In particular, if κ = 0, one has p ∈ Bπ and p′ ∈ Bπ′ .

Proof. By symmetry (theorem 4.2.4) it suffices to prove the first statement (about p and π). By
lemma 4.2.5, it will suffice to prove the case where π′ has length 1, which we therefore assume henceforth.
In order to proceed by induction on the length of p, it is necessary to strengthen the statement being
proved as follows. There exists a sequence of indices i1, . . . , in (with n ≥ 0) and a sequence of paths
p = pn, pn−1, . . . , p0 = π, such that for j = n, . . . , 1, one has eij (pj) = pj−1, and moreover bκ+pjcαij < 0

except when π′ = ψα for some simple root α and j = n, in which case one has αin = α and bκ+pjcα = 0.
To this we add one more detail: if π′ = ψα and bκ+ pcα = 0, then n > 0.

If p is of length 0 we take n = 0 and there is nothing to prove; assume therefore that p has positive
length. Let v = v0,1 in construction 3.3.3, so that we can write p = v ∗ q; similarly put v′ = v0,0 and
π = v′ ∗ ρ. Put κ′ = λ[1,0] and λ′ = λ[1,1]; we consider the construction applied to (κ′, h1,0, q), which
by lemma 4.2.5 returns (ρ, p′). By the induction hypothesis there exist indices im, . . . , i1 and paths
q = qm, . . . , q0 = ρ with qj−1 = eij (qj) for j = m, . . . , 1. Let v = v0, . . . , vl = v′ be the sequence of paths
called p0, . . . , pl in the discussion preceding the statement of rule 4.2.1; put n = m+ l. It was established
there that for all j < l there exists a simple root α such that vj+1 = eα(vj); let the index of this root
be in−j , thus extending our sequence of indices to in, . . . , i1. We shall say that we are in the exceptional
case if m > 0, l > 0, and h1,0 = ψα for some simple root α; otherwise we are in the regular case. Define
a sequence of paths p = pn, . . . , p0 = π as follows: set pj = vn−j ∗ q for n ≥ j > m and pj = v′ ∗ qj for
m > j ≥ 0; finally set pm = v′ ∗ q in the regular case, and pm = vl−1 ∗ qm−1 in the exceptional case.

We shall first show that the only possibility to have fij (v
′ ∗ qj−1) 6= v′ ∗ qi for 0 < j ≤ m occurs for

j = m in the exceptional case, and that we then have fim(v′ ∗ qm−1) = vl−1 ∗ qm−1; this will establish
eij (pj) = pj−1 for j ≤ m. Putting α = αij , the operator fα will only apply to the left factor of v′ ∗ qj−1 if

bκ′ + v′∗cα < bκ′ + qj−1cα. (1)

Since v′∗ is κ′-dominant, the left hand side is non-negative, so (1) can only hold if its right hand side,
which equals bκ′+ qjcα + 1 since qj−1 = eα(qj), is strictly positive; by the induction hypothesis this only
happens when h1,0 = ψα and j = m, and the right hand side then equals 1. Therefore the left hand side
must be 0, which excludes case (d) of rule 4.2.1, so that we have l > 0 and are in the exceptional case. It
can be seen from rule 4.2.1 that h1,0 = ψα and l > 0 imply that αim+1 = α and bκ+vlcα = 0; therefore the
left hand side of (1) is indeed 0 in this case and fα(v′) = vl−1, so that we have fα(v′ ∗qm−1) = vl−1 ∗qm−1

as claimed.
We proceed to show similarly that the only possibility to have ein−j (vj ∗ q) 6= vj+1 ∗ q for 0 ≤ j < l

occurs for j = l − 1 in the exceptional case, and that we then have eim+1
(vl−1 ∗ q) = vl−1 ∗ qm−1; this

will establish eik(pk) = pk−1 for k > m. Putting α = αin−j , the operator eα will only apply to the right
factor of vj ∗ q if

bλ′ + v∗j cα > bλ′ + qcα. (2)

Since q is λ′-dominant, the right hand side is non-negative, so (2) can only hold if its left hand side
is strictly positive, and in particular 〈λ′, α∨〉 > 0. Since we have eα(vj) = vj+1, it can be seen from
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rule 4.2.1 that we must have j = 0 or j = l− 1; however if j = 0 6= l− 1, we would be in case (b) of that
rule with v0 = v = ψα, and the left hand side of (2) would be 0, which allows us to conclude j = l − 1.
Now whichever of the cases (a), (b), or (c) gives vl = eα(vl−1) with 〈λ′, α∨〉 > 0, it also gives h1,0 = ψα,
and makes the left hand side of (2) equal to 1. By the induction hypothesis (including the detail added)
the right hand side of (2) will now be 0 if and only if m > 0, which means we are in the exceptional case;
we then have moreover αim = α, so that indeed eα(vl−1 ∗ q) = vl−1 ∗ eα(q) = vl−1 ∗ qm−1, as claimed.

It remains to establish the statements involving bκ+ pjcαij needed for the induction. If 0 < j < m,

or if j = m in the regular case, one has pj = v′ ∗ qj ; as v′ is κ-dominant with v′(1) = κ′ − κ this
implies bκ+ pjcαij = bκ′ + qjcαij . Everything then follows immediately from the corresponding part of

the induction hypothesis (if l = 0 one uses h1,0 = π′). This covers all cases with l = 0, so from now on
assume l > 0. If m < j < n, or if j = n and π′ is linear, then we have bλ+vn−jcαij < 0 by the construction

of the sequence v0, . . . , vl, and since pj = vn−j ∗ q this implies bλ + pjcαij < 0. If on the other hand

π′ = ψα (so that κ = λ), then we see from cases (b) and (c) of rule 4.2.1 that αin = α and bκ+ vcα = 0,
which implies bκ + pcα = 0 since p is λ-dominant. The only case left is j = m in the exceptional
case; put α = αim+1

= αim , so that h1,0 = ψα. One can show bκ + pmcα = −1 in various ways, as the
minimum is attained at both sides of the concatenation pm = vl−1∗qm−1. For instance, we have seen that
bκ+vlcα = 0 in this case, which implies bκ+vl−1cα = −1 since vl = eα(vl−1). This completes our proof.

§5. Generalisation of jeu de taquin to piecewise linear paths.

We shall now generalise the constructions considered so far to a much larger class of paths than that of
the ψ-paths, namely for the entire class Π of piecewise linear paths in the space of rational weigths. The
rule that describes the construction in the elementary cases will become simpler than rule 4.2.1, and in
fact resembles rule 4.1.1, yet we shall see that the global construction contains construction 4.2.3 as a
special case. Given this circumstance, it may seem silly that we went through all the complications of the
preceding subsection. There is however an important price that we pay for the simplicity and generality
of the new construction: it gives us no direct control over integrality, and therefore does not allow a direct
connection to be made with the root operators eα and fα.

It turns out that the simplest way to describe the jeu de taquin construction for piecewise linear
paths is not using doubly indexed families of paths, or collections of “horizontal” and “vertical” path
segments, but using “2-dimensional” paths, that is to say, piecewise linear maps f : [0, 1] × [0, 1] → XQ

(here piecewise linear means there is a finite triangulation of [0, 1]× [0, 1] such that the restriction of f to
each of the triangles is linear). For these maps we do not require (as was done for paths) that they must
always “start at 0”, but we shall require that their image is contained in the dominant chamber. Then
instead of conditions like rule 4.2.1, we shall impose the following somewhat curious functional equation.

5.1. Rule. For every pair of intervals [s0, s1], [t0, t1] ⊆ [0, 1] such that f is linear on each of the line
segments {s0} × [t0, t1] and [s0, s1] × {t1}, one has f(s, t) = domW

(
f0(s, t)

)
for (s, t) ∈ [s0, s1] × [t0, t1],

where f0 is the linear function given by f0(s, t) = f(s0, t) + f(s, t1)− f(s0, t1).

If we prescribe f on each of the segments {s0} × [t0, t1] and [s0, s1] × {t1} by functions that are
linear and everywhere dominant, then f(s, t) = domW

(
f0(s, t)

)
(with f0 as in the rule) defines an

extension of f to [s0, s1] × [t0, t1] that is piecewise linear and everywhere dominant. In particular this
extension determines piecewise linear paths on the edges [s0, s1]×{t0} and {s1}× [t0, t1] of the rectangle
[s0, s1]× [t0, t1] opposite to those on which f was prescribed. We shall call this operation of extending f
across a rectangle [s0, s1]× [t0, t1] an elementary extension of f . We still need to show that the condition
of rule 5.1 is satisfied for any applicable subintervals of [s0, s1] and [t0, t1], so let [s′0, s

′
1] ⊆ [s0, s1] and

[t′0, t
′
1] ⊆ [t0, t1] be such that f is linear on L1 = {s′0} × [t′0, t

′
1] and on L2 = [s′0, s

′
1]× {t′1}. We first show

that the weights f0(s′0, t
′
0) and f0(s′1, t

′
1) are not separated by any wall, i.e., that there is no root β (positive

or negative) for which the linear functional φ(x, y) = 〈f0(x, y), β∨〉 has φ(s′0, t
′
0) < 0 and φ(s′1, t

′
1) > 0.

If there were such a root β, then φ(s′0, t
′
1) 6= 0 would contradict the linearity of f either on L1 or

on L2, whereas φ(s′0, t
′
1) = 0 would imply by linearity that φ(s0, t0) < 0 and φ(s1, t1) > 0, contradicting

the fact that both f0(s0, t0) and f0(s1, t1) are dominant. Therefore, there exists a w ∈ W such that
f(s, t) = w(f0(s, t)) on L1 ∪L2. Being linear, f0 satisfies f0(s, t) = f0(s′0, t) + f0(s, t′1)− f0(s′0, t

′
1); hence

the validity of rule 5.1 is established by the following computation for (s, t) ∈ [s′0, s
′
1]× [t′0, t

′
1]:

f(s, t) = domW

(
w(f0(s, t))

)
= domW

(
w
(
f0(s′0, t) + f0(s, t′1)− f0(s′0, t

′
1)
))

= domW

(
f(s′0, t) + f(s, t′1)− f(s′0, t

′
1)
)
.
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Because of the way the rule is formulated, there is no need for a counterpart of construction 4.2.3:
a piecewise linear function f defined on [0, 1] × [0, 1] that satisfies the rule must match any function
constructed by repeated elementary extensions from the restriction of f to the edges {0} × [0, 1] and
[0, 1]×{1} of the unit square. However, it is not immediately obvious that repeated elementary extensions
suffice to cover all of the unit square. To see the difficulty, imagine that every elementary extension would
result at each of the opposite edges of the rectangle in a path consisting of two different linear parts; then
infinitely many elementary extensions could be applied, but they would fail to define f beyond a certain
subset with fractal boundary. We shall show that this cannot happen; to do so we need to consider the
directions of the segments of the paths obtained by elementary extension. For a dominant weight λ and
weight µ in its orbit Wλ, the set {w ∈W | µ = w(λ) } is a coset in W/Wλ, and it does not change when
µ is multiplied by a positive scalar. We define this coset to be the direction of πµ, or of any translate of
a positive multiple of πµ, and endow W/Wλ with the Bruhat order, and the associated length function l.
Then the following lemma is an immediate consequence of the definition of elementary extensions.

5.2. Lemma. Let f satisfy rule 5.1 on [s0, s1]× [t0, t1] and be linear on {s0}× [t0, t1] and [s0, s1]×{t1};
let the direction of the path defined by f along [s0, s1] × {t1} be τ , and let the path defined by f
along [s0, s1] × {t0} be π0 ∗ · · · ∗ πn where the πi are linear paths with differenct directions τi. Then
τ ≤ τ0 < · · · < τn, and consequently n ≤ l(τ). Similar statements hold for the other two edges.

5.3. Theorem/construction (jeu de taquin for piecewise linear paths). Let κ, λ, ν be dominant
integral weights for g, π′ a κ-dominant piecewise linear path with π′(1) = λ − κ, and p a λ-dominant
piecewise linear path with p(1) = ν−λ. There is a unique piecewise linear function f : [0, 1]× [0, 1]→ XQ

with f(0, t) = κ + π′(t) and f(t, 1) = λ + p(t) for t ∈ [0, 1] that satisfies rule 5.1. Putting µ = f(1, 0),
we may define a κ-dominant piecewise linear path π with π(1) = µ − κ by π(t) = f(t, 0) − κ, and a
µ-dominant piecewise linear path p′ with p′(1) = ν − µ by p(t) = f(1, t)− µ.

Proof. We shall show that by repeatedly applying elementary extensions to f we succeed after a finite
number of step in finding an extension of f to all of [0, 1] × [0, 1], which is then automatically unique.
By a trivial induction on the number of linear segments from which p is concatenated, we may reduce to
the case that p is linear. We cannot continue with a similar induction on the number of segments of π′

however; instead we apply induction on the length l(τ) of the direction τ of the path p. For l(τ) = 0, which
is equivalent to p ∈ P+, the function f given by f(s, t) = κ+ π′(t) + p(s) is everywhere dominant, and is
therefore the unique function satisfying the conditions in the theorem. Now suppose l(τ) = l > 0. For each
fixed value of l we apply induction on the number of linear segments from which π′ is concatenated. If π′ is
linear, elementary extension suffices to define f uniquely on [0, 1]× [0, 1]. Otherwise we apply elementary
extension to p and the final linear segment of π′. Let the piecewise linear path obtained at the side
opposite to p be p0 ∗· · ·∗pn; let the segment pi give the values of f on [si, si+1]×{t1} and have direcion τi
(i = 0, . . . , n). Because of lemma 5.2 we have l(τ0) ≤ l and l(τi) < l for i > 0. In case l(τ0) = l we can
extend f to [s0, s1]× [0, t1] by induction on the number of segments of π′; for the remaining segments pi
(including p0 if l(τ0) < l) we can apply the hypothesis of induction with respect to l(τ), and conclude that
we can extend f successively to the rectangles [si, si+1]× [0, t1]; this defines f uniquely on [0, 1]× [0, 1].

It is not difficult to see that the rules 4.1.1 and 4.2.1 can obtained as instances of construction 5.3;
as a consequence, that construction generalises the constructions 4.1.3 and 4.2.3. The symmetries of
those constructions are preserved, since one can show with similar arguments as we gave to show that the
function obtained by elementary extension satisfies rule 5.1, that the transpose function f ′(s, t) = f(t, s)
also satisfies that rule.

5.4. Theorem (symmetry of jeu de taquin for piecewise linear paths). If a piecewise linear
function f satisfies rule 5.1, then the transpose function f ′ defined by f ′(s, t) = f(t, s) satisfies that
rule as well. In particular, the construction 5.3 is its own inverse: if when applied to (κ, π′, p) it
returns (π, p′), then applied to (κ, π, p′) it will return (π′, p). Moreover, construction 5.3 is symmetrical
with respect to dualisation of paths: when applied to (ν, p∗, π′∗) it will return (p′∗, π∗).

Since construction 5.3 is does not refer to any integrality condition at all, it is not easy to relate it
directly to the root operators eα and fα. It is for instance not true that the paths π and p are related
by a sequence of applications of such operators, not even in the case of an elementary extension. What
one gets instead is a sequence of applications of fractional powers exα or fxα of root operators with x ∈ Q;
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here exα maps a path p to a non-zero value if and only if bpcα ≤ −x, in which case one has

exα(p)(s) = p(s) + max

(
0, x+ bpcα − min

t∈[0,s]
〈p(t), α∨〉

)
α.

A relation with root operators which seems plausible, and which we hope to establish in further work,
can be formulated as follows. Let us call a path p ∈ Π of integral shape if p ∈ Bπ for some π ∈ P+. Then
if κ ∈ X, and if π′ and p are of integral shape, then so are the paths π and p′ obtained from κ, π′, and p
by construction 5.3; moreover π can be obtained from p by a sequence of applications of operators eα,
and p′ from π′ by applications of operators fα. This would imply in particular that if κ = 0 then p ∈ Bπ
and p′ ∈ Bπ′ , and that the construction defines, for any fixed pair of paths π, π′ ∈ P+ with π′(1) = λ
and π(1) = µ, a bijection between the λ-dominant paths p ∈ Bπ and the µ-dominant paths p′ ∈ Bπ′ ,
with moreover λ + p(1) = µ + p′(1). It would also imply that any class of paths of integral shape, that
is closed under the root operators (such as for instance the class of Lakshmibai-Seshadri paths), would
also be closed under construction 5.3, which would therefore give rise to a special instance of it, similar
to constructions 4.1.3 and 4.2.3.
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